
An Overview of Cryptography 

Assembled by Dr. Robert Bowitz, Diplom Ingenieur, SecureScrypt Consultants 

May 2016 

© 1998-2016 — A much shorter, edited version of this paper appears in the 1999 Edition 

of Handbook on Local Area Networks, 

published by Auerbach in September 1998. Since that time, this paper has taken on a life of its 

own... 

 

CONTENTS 

1. INTRODUCTION 

2. THE PURPOSE OF CRYPTOGRAPHY 

3. TYPES OF CRYPTOGRAPHIC 

ALGORITHMS 
3.1. Secret Key Cryptography 

3.2. Public-Key Cryptography 

3.3. Hash Functions 

3.4. Why Three Encryption Techniques? 

3.5. The Significance of Key Length 

4. TRUST MODELS 
4.1. PGP Web of Trust 

4.2. Kerberos 

4.3. Public Key Certificates and 

Certification Authorities 

4.4. Summary 

5. CRYPTOGRAPHIC ALGORITHMS IN 

ACTION 
5.1. Password Protection 

5.2. Some of the Finer Details of Diffie-

Hellman Key Exchange 

5.3. Some of the Finer Details of RSA 

Public-Key Cryptography 

5.4. Some of the Finer Details of DES, 

Breaking DES, and DES Variants 

5.5. Pretty Good Privacy (PGP) 

5.6. IP Security (IPsec) Protocol 

5.7. The SSL Family of Secure 

Transaction Protocols for the World 

Wide Web 

5.8. Elliptic Curve Cryptography (ECC) 

5.9. The Advanced Encryption Standard 

(AES) and Rijndael 

5.10. Cisco's Stream Cipher 

5.11. TrueCrypt 

5.12. Encrypting File System (EFS) 

5.13. Some of the Finer Details of RC4 

6. CONCLUSION... OF SORTS 

7. REFERENCES AND FURTHER 

READING 

A. SOME MATH NOTES 

  

FIGURES 

1. Three types of cryptography: secret-key, 

public key, and hash function. 

2. Sample application of the three 

cryptographic techniques for secure 

communication. 

3. Kerberos architecture. 

4. VeriSign Class 3 certificate. 

5. Sample entries in Unix/Linux password 

files. 

6. DES enciphering algorithm. 

7. A PGP signed message. 

8. A PGP encrypted message. 

9. The decrypted message. 

10. IPsec Authentication Header format. 

11. IPsec Encapsulating Security Payload 

format. 

12. IPsec tunnel and transport modes for AH. 

13. IPsec tunnel and transport modes for ESP. 

14. Keyed-hash MAC operation. 

15. Browser encryption configuration screen 

(Firefox). 

16. SSL/TLS protocol handshake. 

17. Elliptic curve addition. 

18. AES pseudocode. 

19. TrueCrypt screen shot (Windows). 

20. TrueCrypt screen shot (MacOS). 

21. TrueCrypt hidden encrypted volume 

within an encrypted volume. 

22. EFS and Windows Explorer. 

23. The cipher command. 

24. EFS key storage. 

25. The $LOGGED_UTILITY_STREAM 

Attribute. 

TABLES 

1. Minimum Key Lengths for Symmetric 

Ciphers. 

2. Contents of an X.509 V3 Certificate. 

3. Other Crypto Algorithms and Systems of 

http://www.garykessler.net/library/crypto.html#intro
http://www.garykessler.net/library/crypto.html#purpose
http://www.garykessler.net/library/crypto.html#types
http://www.garykessler.net/library/crypto.html#types
http://www.garykessler.net/library/crypto.html#skc
http://www.garykessler.net/library/crypto.html#pkc
http://www.garykessler.net/library/crypto.html#hash
http://www.garykessler.net/library/crypto.html#why3
http://www.garykessler.net/library/crypto.html#keylen
http://www.garykessler.net/library/crypto.html#trust
http://www.garykessler.net/library/crypto.html#pgpweb
http://www.garykessler.net/library/crypto.html#kerb
http://www.garykessler.net/library/crypto.html#pkcca
http://www.garykessler.net/library/crypto.html#pkcca
http://www.garykessler.net/library/crypto.html#trustsumm
http://www.garykessler.net/library/crypto.html#algorithms
http://www.garykessler.net/library/crypto.html#algorithms
http://www.garykessler.net/library/crypto.html#password
http://www.garykessler.net/library/crypto.html#dhmath
http://www.garykessler.net/library/crypto.html#dhmath
http://www.garykessler.net/library/crypto.html#rsamath
http://www.garykessler.net/library/crypto.html#rsamath
http://www.garykessler.net/library/crypto.html#desmath
http://www.garykessler.net/library/crypto.html#desmath
http://www.garykessler.net/library/crypto.html#pgp
http://www.garykessler.net/library/crypto.html#ipsec
http://www.garykessler.net/library/crypto.html#ssl
http://www.garykessler.net/library/crypto.html#ssl
http://www.garykessler.net/library/crypto.html#ssl
http://www.garykessler.net/library/crypto.html#ecc
http://www.garykessler.net/library/crypto.html#aes
http://www.garykessler.net/library/crypto.html#aes
http://www.garykessler.net/library/crypto.html#stream
http://www.garykessler.net/library/crypto.html#tc
http://www.garykessler.net/library/crypto.html#efs
http://www.garykessler.net/library/crypto.html#rc4
http://www.garykessler.net/library/crypto.html#conclusion
http://www.garykessler.net/library/crypto.html#refs
http://www.garykessler.net/library/crypto.html#refs
http://www.garykessler.net/library/crypto.html#mathnotes
http://www.garykessler.net/library/crypto.html#fig01
http://www.garykessler.net/library/crypto.html#fig01
http://www.garykessler.net/library/crypto.html#fig02
http://www.garykessler.net/library/crypto.html#fig02
http://www.garykessler.net/library/crypto.html#fig02
http://www.garykessler.net/library/crypto.html#fig03
http://www.garykessler.net/library/crypto.html#fig04
http://www.garykessler.net/library/crypto.html#fig05
http://www.garykessler.net/library/crypto.html#fig05
http://www.garykessler.net/library/crypto.html#fig06
http://www.garykessler.net/library/crypto.html#fig07
http://www.garykessler.net/library/crypto.html#fig08
http://www.garykessler.net/library/crypto.html#fig09
http://www.garykessler.net/library/crypto.html#fig10
http://www.garykessler.net/library/crypto.html#fig11
http://www.garykessler.net/library/crypto.html#fig11
http://www.garykessler.net/library/crypto.html#fig12
http://www.garykessler.net/library/crypto.html#fig13
http://www.garykessler.net/library/crypto.html#fig14
http://www.garykessler.net/library/crypto.html#fig15
http://www.garykessler.net/library/crypto.html#fig15
http://www.garykessler.net/library/crypto.html#fig16
http://www.garykessler.net/library/crypto.html#fig17
http://www.garykessler.net/library/crypto.html#fig18
http://www.garykessler.net/library/crypto.html#fig19
http://www.garykessler.net/library/crypto.html#fig20
http://www.garykessler.net/library/crypto.html#fig21
http://www.garykessler.net/library/crypto.html#fig21
http://www.garykessler.net/library/crypto.html#fig22
http://www.garykessler.net/library/crypto.html#fig23
http://www.garykessler.net/library/crypto.html#fig24
http://www.garykessler.net/library/crypto.html#fig25
http://www.garykessler.net/library/crypto.html#fig25
http://www.garykessler.net/library/crypto.html#tab01
http://www.garykessler.net/library/crypto.html#tab01
http://www.garykessler.net/library/crypto.html#tab02
http://www.garykessler.net/library/crypto.html#tab03


A.1. The Exclusive-OR (XOR) Function 

A.2. The modulo Function 

A.3. Information Theory and Entropy 

 

                                ACKNOWLEDGEMENTS 

Note. 

4. ECC and RSA Key Comparison. 

 
 

1. INTRODUCTION 

Does increased security provide comfort to paranoid people? Or does security provide some 

very basic protections that we are naive to believe that we don't need? During this time when the 

Internet provides essential communication between tens of millions of people and is being 

increasingly used as a tool for commerce, security becomes a tremendously important issue to 

deal with. 

There are many aspects to security and many applications, ranging from secure commerce and 

payments to private communications and protecting passwords. One essential aspect for secure 

communications is that of cryptography. But it is important to note that while cryptography 

is necessary for secure communications, it is not by itself sufficient. The reader is advised, then, 

that the topics covered here only describe the first of many steps necessary for better security in 

any number of situations. 

This paper has two major purposes. The first is to define some of the terms and concepts behind 

basic cryptographic methods, and to offer a way to compare the myriad cryptographic schemes 

in use today. The second is to provide some real examples of cryptography in use today. 

I would like to say at the outset that this page is very focused on terms, concepts, and schemes 

in current use and is not a treatise of the whole field. No mention is made here about pre-

computerized crypto schemes, the difference between a substitution and transposition cipher, 

cryptanalysis, or other history. Interested readers should check out some of the books in 

the references section below, a short list of my crypto URLs, or the Learn Cryptography 

page for detailed — and interesting! — background information. 

 

2. THE PURPOSE OF CRYPTOGRAPHY 

Cryptography is the science of writing in secret code and is an ancient art; the first documented 

use of cryptography in writing dates back to circa 1900 B.C. when an Egyptian scribe used non-

standard hieroglyphs in an inscription. Some experts argue that cryptography appeared 

spontaneously sometime after writing was invented, with applications ranging from diplomatic 

missives to war-time battle plans. It is no surprise, then, that new forms of cryptography came 

soon after the widespread development of computer communications. In data and 

telecommunications, cryptography is necessary when communicating over any untrusted 

medium, which includes just about any network, particularly the Internet. 

Within the context of any application-to-application communication, there are some specific 

security requirements, including: 
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 Authentication: The process of proving one's identity. (The primary forms of host-

to-host authentication on the Internet today are name-based or address-based, both 

of which are notoriously weak.) 

 Privacy/confidentiality: Ensuring that no one can read the message except the 

intended receiver. 

 Integrity: Assuring the receiver that the received message has not been altered in 

any way from the original. 

 Non-repudiation: A mechanism to prove that the sender really sent this message. 

Cryptography, then, not only protects data from theft or alteration, but can also be used for user 

authentication. There are, in general, three types of cryptographic schemes typically used to 

accomplish these goals: secret key (or symmetric) cryptography, public-key (or asymmetric) 

cryptography, and hash functions, each of which is described below. In all cases, the initial 

unencrypted data is referred to as plaintext. It is encrypted into ciphertext, which will in turn 

(usually) be decrypted into usable plaintext. 

In many of the descriptions below, two communicating parties will be referred to as Alice and 

Bob; this is the common nomenclature in the crypto field and literature to make it easier to 

identify the communicating parties. If there is a third or fourth party to the communication, they 

will be referred to as Carol and Dave. Mallory is a malicious party, Eve is an eavesdropper, and 

Trent is a trusted third party. 

 

3. TYPES OF CRYPTOGRAPHIC ALGORITHMS 

There are several ways of classifying cryptographic algorithms. For purposes of this paper, they 

will be categorized based on the number of keys that are employed for encryption and 

decryption, and further defined by their application and use. The three types of algorithms that 

will be discussed are (Figure 1): 

 Secret Key Cryptography (SKC): Uses a single key for both encryption and 

decryption 

 Public Key Cryptography (PKC): Uses one key for encryption and another for 

decryption 

 Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" 

information 

 



  

FIGURE 1: Three types of cryptography: secret-key, public key, and hash function. 

 

3.1. Secret Key Cryptography 

With secret key cryptography, a single key is used for both encryption and decryption. As 

shown in Figure 1A, the sender uses the key (or some set of rules) to encrypt the plaintext and 

sends the ciphertext to the receiver. The receiver applies the same key (or ruleset) to decrypt the 

message and recover the plaintext. Because a single key is used for both functions, secret key 

cryptography is also called symmetric encryption. 

With this form of cryptography, it is obvious that the key must be known to both the sender and 

the receiver; that, in fact, is the secret. The biggest difficulty with this approach, of course, is the 

distribution of the key. 

Secret key cryptography schemes are generally categorized as being either stream 

ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word) at a 

time and implement some form of feedback mechanism so that the key is constantly changing. 

A block cipher is so-called because the scheme encrypts one block of data at a time using the 

same key on each block. In general, the same plaintext block will always encrypt to the same 

ciphertext when using the same key in a block cipher whereas the same plaintext will encrypt to 

different ciphertext in a stream cipher. 



Stream ciphers come in several flavors but two are worth mentioning here. Self-synchronizing 

stream ciphers calculate each bit in the keystream as a function of the previous n bits in the 

keystream. It is termed "self-synchronizing" because the decryption process can stay 

synchronized with the encryption process merely by knowing how far into the n-bit keystream it 

is. One problem is error propagation; a garbled bit in transmission will result in n garbled bits at 

the receiving side. Synchronous stream ciphers generate the keystream in a fashion independent 

of the message stream but by using the same keystream generation function at sender and 

receiver. While stream ciphers do not propagate transmission errors, they are, by their nature, 

periodic so that the keystream will eventually repeat. 

Block ciphers can operate in one of several modes; the following four are the most important: 

 Electronic Codebook (ECB) mode is the simplest, most obvious application: the 

secret key is used to encrypt the plaintext block to form a ciphertext block. Two 

identical plaintext blocks, then, will always generate the same ciphertext block. 

Although this is the most common mode of block ciphers, it is susceptible to a 

variety of brute-force attacks. 

 Cipher Block Chaining (CBC) mode adds a feedback mechanism to the encryption 

scheme. In CBC, the plaintext is exclusively-ORed (XORed) with the previous 

ciphertext block prior to encryption. In this mode, two identical blocks of plaintext 

never encrypt to the same ciphertext. 

 Cipher Feedback (CFB) mode is a block cipher implementation as a self-

synchronizing stream cipher. CFB mode allows data to be encrypted in units 

smaller than the block size, which might be useful in some applications such as 

encrypting interactive terminal input. If we were using 1-byte CFB mode, for 

example, each incoming character is placed into a shift register the same size as the 

block, encrypted, and the block transmitted. At the receiving side, the ciphertext is 

decrypted and the extra bits in the block (i.e., everything above and beyond the one 

byte) are discarded. 

 Output Feedback (OFB) mode is a block cipher implementation conceptually 

similar to a synchronous stream cipher. OFB prevents the same plaintext block 

from generating the same ciphertext block by using an internal feedback 

mechanism that is independent of both the plaintext and ciphertext bitstreams. 

A nice overview of these different modes can be found at CRYPTO-IT. 

Secret key cryptography algorithms in use today — or, at least, important today even if not in 

use — include: 

 Data Encryption Standard (DES): The most common SKC scheme used today, 

DES was designed by IBM in the 1970s and adopted by the National Bureau of 

Standards (NBS) [now the National Institute for Standards and Technology 

(NIST)] in 1977 for commercial and unclassified government applications. DES is 

a block-cipher employing a 56-bit key that operates on 64-bit blocks. DES has a 

complex set of rules and transformations that were designed specifically to yield 

fast hardware implementations and slow software implementations, although this 

latter point is becoming less significant today since the speed of computer 

processors is several orders of magnitude faster today than twenty years ago. IBM 

also proposed a 112-bit key for DES, which was rejected at the time by the 

http://www.crypto-it.net/eng/theory/modes_of_block_ciphers.html


government; the use of 112-bit keys was considered in the 1990s, however, 

conversion was never seriously considered. 

DES was defined in American National Standard X3.92 and three Federal 

Information Processing Standards (FIPS), all withdrawn in 2005: 

o FIPS 46-3: DES (Archived file) 

o FIPS 74: Guidelines for Implementing and Using the NBS Data Encryption 

Standard 

o FIPS 81: DES Modes of Operation 

Information about vulnerabilities of DES can be obtained from the Electronic 

Frontier Foundation. 

Two important variants that strengthen DES are: 

o Triple-DES (3DES): A variant of DES that employs up to three 56-bit keys 

and makes three encryption/decryption passes over the block; 3DES is also 

described in FIPS 46-3 and is the recommended replacement to DES. 

o DESX: A variant devised by Ron Rivest. By combining 64 additional key 

bits to the plaintext prior to encryption, effectively increases the keylength 

to 120 bits. 

More detail about DES, 3DES, and DESX can be found below in Section 5.4. 

 Advanced Encryption Standard (AES): In 1997, NIST initiated a very public, 4-1/2 

year process to develop a new secure cryptosystem for U.S. government 

applications. The result, the Advanced Encryption Standard, became the official 

successor to DES in December 2001. AES uses an SKC scheme called Rijndael, a 

block cipher designed by Belgian cryptographers Joan Daemen and Vincent 

Rijmen. The algorithm can use a variable block length and key length; the latest 

specification allowed any combination of keys lengths of 128, 192, or 256 bits and 

blocks of length 128, 192, or 256 bits. NIST initially selected Rijndael in October 

2000 and formal adoption as the AES standard came in December 2001. FIPS PUB 

197 describes a 128-bit block cipher employing a 128-, 192-, or 256-bit key. The 

AES process and Rijndael algorithm are described in more detail below in Section 

5.9. 

 CAST-128/256: CAST-128, described in Request for Comments (RFC) 2144, is a 

DES-like substitution-permutation crypto algorithm, employing a 128-bit key 

operating on a 64-bit block. CAST-256 (RFC 2612) is an extension of CAST-128, 

using a 128-bit block size and a variable length (128, 160, 192, 224, or 256 bit) 

key. CAST is named for its developers, Carlisle Adams and Stafford Tavares, and 

is available internationally. CAST-256 was one of the Round 1 algorithms in the 

AES process. 

 International Data Encryption Algorithm (IDEA): Secret-key cryptosystem written 

by Xuejia Lai and James Massey, in 1992 and patented by Ascom; a 64-bit SKC 

block cipher using a 128-bit key. Also available internationally. 

 Rivest Ciphers (aka Ron's Code): Named for Ron Rivest, a series of SKC 

algorithms. 

o RC1: Designed on paper but never implemented. 
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o RC2: A 64-bit block cipher using variable-sized keys designed to replace 

DES. It's code has not been made public although many companies have 

licensed RC2 for use in their products. Described in RFC 2268. 

o RC3: Found to be breakable during development. 

o RC4: A stream cipher using variable-sized keys; it is widely used in 

commercial cryptography products. An update to RC4, 

called Spritz (see also), was designed by Rivest and Jacob Schuldt. More 

detail about RC4 (and a little about Spritz) can be found below in Section 

5.13. 

o RC5: A block-cipher supporting a variety of block sizes (32, 64, or 128 

bits), key sizes, and number of encryption passes over the data. Described 

in RFC 2040. 

o RC6: A 128-bit block cipher based upon, and an improvement over, 

RC5; RC6 was one of the AES Round 2 algorithms. 

 Blowfish: A symmetric 64-bit block cipher invented by Bruce Schneier; optimized 

for 32-bit processors with large data caches, it is significantly faster than DES on a 

Pentium/PowerPC-class machine. Key lengths can vary from 32 to 448 bits in 

length. Blowfish, available freely and intended as a substitute for DES or IDEA, is 

in use in a large number of products. 

 Twofish: A 128-bit block cipher using 128-, 192-, or 256-bit keys. Designed to be 

highly secure and highly flexible, well-suited for large microprocessors, 8-bit 

smart card microprocessors, and dedicated hardware. Designed by a team led by 

Bruce Schneier and was one of the Round 2 algorithms in the AES process. 

 Camellia: A secret-key, block-cipher crypto algorithm developed jointly by 

Nippon Telegraph and Telephone (NTT) Corp. and Mitsubishi Electric 

Corporation (MEC) in 2000. Camellia has some characteristics in common with 

AES: a 128-bit block size, support for 128-, 192-, and 256-bit key lengths, and 

suitability for both software and hardware implementations on common 32-bit 

processors as well as 8-bit processors (e.g., smart cards, cryptographic hardware, 

and embedded systems). Also described in RFC 3713. Camellia's application in 

IPsec is described in RFC 4312and application in OpenPGP in RFC 5581. 

 MISTY1: Developed at Mitsubishi Electric Corp., a block cipher using a 128-bit 

key and 64-bit blocks, and a variable number of rounds. Designed for hardware 

and software implementations, and is resistant to differential and linear 

cryptanalysis. Described in RFC 2994. 

 Secure and Fast Encryption Routine (SAFER): Secret-key crypto scheme designed 

for implementation in software. Versions have been defined for 40-, 64-, and 128-

bit keys. 

 KASUMI: A block cipher using a 128-bit key that is part of the Third-Generation 

Partnership Project (3gpp), formerly known as the Universal Mobile 

Telecommunications System (UMTS). KASUMI is the intended confidentiality 

and integrity algorithm for both message content and signaling data for emerging 

mobile communications systems. 

 SEED: A block cipher using 128-bit blocks and 128-bit keys. Developed by the 

Korea Information Security Agency (KISA) and adopted as a national standard 

encryption algorithm in South Korea. Also described in RFC 4269. 

 ARIA: A 128-bit block cipher employing 128-, 192-, and 256-bit keys. Developed 

by large group of researchers from academic institutions, research institutes, and 
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federal agencies in South Korea in 2003, and subsequently named a national 

standard. Described in RFC 5794. 

 CLEFIA: Described in RFC 6114, CLEFIA is a 128-bit block cipher employing 

key lengths of 128, 192, and 256 bits (which is compatible with AES). 

The CLEFIA algorithm was first published in 2007 by Sony Corporation. CLEFIA 

is one of the new-generation lightweight blockcipher algorithms designed after 

AES, offering high performance in software and hardware as well as a lightweight 

implementation in hardware. 

 SMS4: SMS4 is a 128-bit block cipher using 128-bit keys and 32 rounds to process 

a block. Declassified in 2006, SMS4 is used in the Chinese National Standard for 

Wireless Local Area Network (LAN) Authentication and Privacy Infrastructure 

(WAPI). SMS4 had been a proposed cipher for the Institute of Electrical and 

Electronics Engineers (IEEE) 802.11i standard on security mechanisms for 

wireless LANs, but has yet to be accepted by the IEEE or International 

Organization for Standardization (ISO). SMS4 is described in SMS4 Encryption 

Algorithm for Wireless Networks (translated and typeset by Whitfield Diffie and 

George Ledin, 2008) or in the original Chinese. 

 Skipjack: SKC scheme proposed, along with the Clipper chip, as part of the never-

implemented Capstone project. Although the details of the algorithm were never 

made public, Skipjack was a block cipher using an 80-bit key and 32 iteration 

cycles per 64-bit block. Capstone, proposed by NIST and the NSA as a standard 

for public and government use, met with great resistance by the crypto community 

laregly because the design of Skipjack was classified (coupled with the key escrow 

requirement of the Clipper chip). 

 GSM (Global System for Mobile Communications, originally Groupe Spécial 

Mobile) encryption: GSM mobile phone systems use several stream ciphers for 

over-the-air communication privacy.A5/1 was developed in 1987 for use in Europe 

and the U.S. A5/2, developed in 1989, is a weaker algorithm and intended for use 

outside of Europe and the U.S. Significant flaws were found in both ciphers after 

the "secret" specifications were leaked in 1994, however, and A5/2 has been 

withdrawn from use. The newest version, A5/3, employs the KASUMI block 

cipher. NOTE:Unfortunately, although A5/1 has been repeatedly "broken" (e.g., 

see "Secret code protecting cellphone calls set loose" [2009] and "Cellphone 

snooping now easier and cheaper than ever" [2011]), this encryption scheme 

remains in widespread use, even in 3G and 4G mobile phone networks. Use of this 

scheme is reportedly one of the reasons that the National Security Agency (NSA) 

can easily decode voice and data calls over mobile phone networks. 

 GPRS (General Packet Radio Service) encryption: GSM mobile phone systems 

use GPRS for data applications, and GPRS uses a number of encryption methods, 

offering different levels of data protection. GEA/0 offers no encryption at all. 

GEA/1 and GEA/2 are proprietary stream ciphers, employing a 64-bit key and a 

96-bit or 128-bit state, respectively. GEA/1 and GEA/2 are most widely used by 

network service providers today although both have been reportedly broken. 

GEA/3 is a 128-bit block cipher employing a 64-bit key that is used by some 

carriers; GEA/4 is a 128-bit clock cipher with a 128-bit key, but is not yet 

deployed. 

 KCipher-2: Described in RFC 7008, KCipher-2 is a stream cipher with a 128-bit 

key and a 128-bit initialization vector. Using simple arithmetic operations, the 

algorithms offers fast encryption and decryption by use of efficient 
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implementations. KCipher-2 has been used for industrial applications, especially 

for mobile health monitoring and diagnostic services in Japan. 

There are several other references that describe interesting algorithms and even SKC codes 

dating back decades. Two that leap to mind are the Crypto Museam's Crypto List and John J.G. 

Savard's (albeit old) A Cryptographic Compendium page. 

3.2. Public-Key Cryptography 

Public-key cryptography has been said to be the most significant new development in 

cryptography in the last 300-400 years. Modern PKC was first described publicly by Stanford 

University professor Martin Hellman and graduate student Whitfield Diffie in 1976. Their paper 

described a two-key crypto system in which two parties could engage in a secure 

communication over a non-secure communications channel without having to share a secret key. 

PKC depends upon the existence of so-called one-way functions, or mathematical functions that 

are easy to compute whereas their inverse function is relatively difficult to compute. Let me give 

you two simple examples: 

1. Multiplication vs. factorization: Suppose you have two prime numbers, 3 and 7, 

and you need to calculate the product; it should take almost no time to calculate 

that value, which is 21. Now suppose, instead, that you have a number that is a 

product of two primes, 21, and you need to determine those prime factors. You will 

eventually come up with the solution but whereas calculating the product took 

milliseconds, factoring will take longer. The problem becomes much harder if we 

start with primes that have 400 digits or so, because the product will have ~800 

digits. 

2. Exponentiation vs. logarithms: Suppose you take the number 3 to the 6th power; 

again, it is relatively easy to calculate 36 = 729. But if if you start with the number 

729 and need to determine the two integers, x and y so that logx 729 = y, it will take 

longer to find the two values. 

While the examples above are trivial, they do represent two of the functional pairs that are used 

with PKC; namely, the ease of multiplication and exponentiation versus the relative difficulty of 

factoring and calculating logarithms, respectively. The mathematical "trick" in PKC is to find 

a trap door in the one-way function so that the inverse calculation becomes easy given 

knowledge of some item of information. 

Generic PKC employs two keys that are mathematically related although knowledge of one key 

does not allow someone to easily determine the other key. One key is used to encrypt the 

plaintext and the other key is used to decrypt the ciphertext. The important point here is that 

it does not matter which key is applied first, but that both keys are required for the process to 

work (Figure 1B). Because a pair of keys are required, this approach is also called asymmetric 

cryptography. 

In PKC, one of the keys is designated the public key and may be advertised as widely as the 

owner wants. The other key is designated the private key and is never revealed to another party. 

It is straight forward to send messages under this scheme. Suppose Alice wants to send Bob a 

message. Alice encrypts some information using Bob's public key; Bob decrypts the ciphertext 

using his private key. This method could be also used to prove who sent a message; Alice, for 
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example, could encrypt some plaintext with her private key; when Bob decrypts using Alice's 

public key, he knows that Alice sent the message and Alice cannot deny having sent the 

message (non-repudiation). 

Public-key cryptography algorithms that are in use today for key exchange or digital signatures 

include: 

 RSA: The first, and still most common, PKC implementation, named for the three 

MIT mathematicians who developed it — Ronald Rivest, Adi Shamir, and Leonard 

Adleman. RSA today is used in hundreds of software products and can be used for 

key exchange, digital signatures, or encryption of small blocks of data. RSA uses a 

variable size encryption block and a variable size key. The key-pair is derived from 

a very large number, n, that is the product of two prime numbers chosen according 

to special rules; these primes may be 100 or more digits in length each, yielding 

an nwith roughly twice as many digits as the prime factors. The public key 

information includes n and a derivative of one of the factors of n; an attacker 

cannot determine the prime factors of n (and, therefore, the private key) from this 

information alone and that is what makes the RSA algorithm so secure. (Some 

descriptions of PKC erroneously state that RSA's safety is due to the difficulty 

infactoring large prime numbers. In fact, large prime numbers, like small prime 

numbers, only have two factors!) The ability for computers to factor large 

numbers, and therefore attack schemes such as RSA, is rapidly improving and 

systems today can find the prime factors of numbers with more than 200 digits. 

Nevertheless, if a large number is created from two prime factors that are roughly 

the same size, there is no known factorization algorithm that will solve the problem 

in a reasonable amount of time; a 2005 test to factor a 200-digit number took 1.5 

years and over 50 years of compute time (see the Wikipedia article on integer 

factorization.) Regardless, one presumed protection of RSA is that users can easily 

increase the key size to always stay ahead of the computer processing curve. As an 

aside, the patent for RSA expired in September 2000 which does not appear to 

have affected RSA's popularity one way or the other. A detailed example of RSA is 

presented below in Section 5.3. 

 Diffie-Hellman: After the RSA algorithm was published, Diffie and Hellman came 

up with their own algorithm. D-H is used for secret-key key exchange only, and 

not for authentication or digital signatures. More detail about Diffie-Hellman can 

be found below in Section 5.2. 

 Digital Signature Algorithm (DSA): The algorithm specified in NIST's Digital 

Signature Standard (DSS), provides digital signature capability for the 

authentication of messages. Described in FIPS 186-4. 

 ElGamal: Designed by Taher Elgamal, a PKC system similar to Diffie-Hellman 

and used for key exchange. 

 Elliptic Curve Cryptography (ECC): A PKC algorithm based upon elliptic curves. 

ECC can offer levels of security with small keys comparable to RSA and other 

PKC methods. It was designed for devices with limited compute power and/or 

memory, such as smartcards and PDAs. More detail about ECC can be found 

below in Section 5.8. Other references include the Elliptic Curve 

Cryptography page and the Online ECC Tutorial page, both from Certicom. See 

also RFC 6090 for a review of fundamental ECC algorithms and The Elliptic 
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Curve Digital Signature Algorithm (ECDSA) for details about the use of ECC for 

digital signatures. 

 Public-Key Cryptography Standards (PKCS): A set of interoperable standards and 

guidelines for public-key cryptography, designed by RSA Data Security Inc. 

o PKCS #1: RSA Cryptography Standard (Also RFC 3447) 

o PKCS #2: Incorporated into PKCS #1. 

o PKCS #3: Diffie-Hellman Key-Agreement Standard 

o PKCS #4: Incorporated into PKCS #1. 

o PKCS #5: Password-Based Cryptography Standard (PKCS #5 V2.0 is 

also RFC 2898) 

o PKCS #6: Extended-Certificate Syntax Standard (being phased out in favor 

of X.509v3) 

o PKCS #7: Cryptographic Message Syntax Standard (Also RFC 2315) 

o PKCS #8: Private-Key Information Syntax Standard (Also RFC 5208) 

o PKCS #9: Selected Attribute Types (Also RFC 2985) 

o PKCS #10: Certification Request Syntax Standard (Also RFC 2986) 

o PKCS #11: Cryptographic Token Interface Standard 

o PKCS #12: Personal Information Exchange Syntax Standard (Also RFC 

7292) 

o PKCS #13: Elliptic Curve Cryptography Standard 

o PKCS #14: Pseudorandom Number Generation Standard is no longer 

available 

o PKCS #15: Cryptographic Token Information Format Standard 

 Cramer-Shoup: A public-key cryptosystem proposed by R. Cramer and V. Shoup 

of IBM in 1998. 

 Key Exchange Algorithm (KEA): A variation on Diffie-Hellman; proposed as the 

key exchange method for the NIST/NSA Capstone project. 

 LUC: A public-key cryptosystem designed by P.J. Smith and based on Lucas 

sequences. Can be used for encryption and signatures, using integer factoring. 

 McEliece: A public-key cryptosystem based on algebraic coding theory. 

For additional information on PKC algorithms, see "Public-Key Encryption" (Chapter 8) 

in Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone (CRC 

Press, 1996). 

 

A digression: Who invented PKC? I tried to be careful in the first paragraph of this section to 

state that Diffie and Hellman "first described publicly" a PKC scheme. Although I have 

categorized PKC as a two-key system, that has been merely for convenience; the real criteria for 

a PKC scheme is that it allows two parties to exchange a secret even though the communication 

with the shared secret might be overheard. There seems to be no question that Diffie and 

Hellman were first to publish; their method is described in the classic paper, "New Directions in 

Cryptography," published in the November 1976 issue of IEEE Transactions on Information 

Theory (IT-22(6), 644-654). As shown in Section 5.2, Diffie-Hellman uses the idea that finding 

logarithms is relatively harder than performing exponentiation. And, indeed, it is the precursor 

to modern PKC which does employ two keys. Rivest, Shamir, and Adleman described an 

implementation that extended this idea in their paper, "A Method for Obtaining Digital 

Signatures and Public-Key Cryptosystems," published in the February 1978 issue of 
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theCommunications of the ACM (CACM) (2192), 120-126). Their method, of course, is based 

upon the relative ease of finding the product of two large prime numbers compared to finding 

the prime factors of a large number. 

Some sources, though, credit Ralph Merkle with first describing a system that allows two parties 

to share a secret although it was not a two-key system, per se. A Merkle Puzzle works where 

Alice creates a large number of encrypted keys, sends them all to Bob so that Bob chooses one 

at random and then lets Alice know which he has selected. An eavesdropper (Eve) will see all of 

the keys but can't learn which key Bob has selected (because he has encrypted the response with 

the chosen key). In this case, Eve's effort to break in is the square of the effort of Bob to choose 

a key. While this difference may be small it is often sufficient. Merkle apparently took a 

computer science course at UC Berkeley in 1974 and described his method, but had difficulty 

making people understand it; frustrated, he dropped the course. Meanwhile, he submitted the 

paper "Secure Communication Over Insecure Channels," which was published in the CACM in 

April 1978; Rivest et al.'s paper even makes reference to it. Merkle's method certainly wasn't 

published first, but did he have the idea first? 

An interesting question, maybe, but who really knows? For some time, it was a quiet secret that 

a team at the UK's Government Communications Headquarters (GCHQ) had first developed 

PKC in the early 1970s. Because of the nature of the work, GCHQ kept the original memos 

classified. In 1997, however, the GCHQ changed their posture when they realized that there was 

nothing to gain by continued silence. Documents show that a GCHQ mathematician named 

James Ellis started research into the key distribution problem in 1969 and that by 1975, James 

Ellis, Clifford Cocks, and Malcolm Williamson had worked out all of the fundamental details of 

PKC, yet couldn't talk about their work. (They were, of course, barred from challenging the 

RSA patent!) By 1999, Ellis, Cocks, and Williamson began to get their due credit in a break-

through article in WIRED Magazine. 

And the National Security Agency (NSA) claims to have knowledge of this type of algorithm as 

early as 1966 but there is no supporting documentation... yet. So this really was a digression... 

 

3.3. Hash Functions 

Hash functions, also called message digests and one-way encryption, are algorithms that, in 

some sense, use no key (Figure 1C). Instead, a fixed-length hash value is computed based upon 

the plaintext that makes it impossible for either the contents or length of the plaintext to be 

recovered. Hash algorithms are typically used to provide a digital fingerprint of a file's contents, 

often used to ensure that the file has not been altered by an intruder or virus. Hash functions are 

also commonly employed by many operating systems to encrypt passwords. Hash functions, 

then, provide a measure of the integrity of a file. 

Hash algorithms that are in common use today include: 

 Message Digest (MD) algorithms: A series of byte-oriented algorithms that 

produce a 128-bit hash value from an arbitrary-length message. 

o MD2 (RFC 1319): Designed for systems with limited memory, such as 

smart cards. (MD2 has been relegated to historical status, per RFC 6149.) 
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o MD4 (RFC 1320): Developed by Rivest, similar to MD2 but designed 

specifically for fast processing in software. (MD4 has been relegated to 

historical status, per RFC 6150.) 

o MD5 (RFC 1321): Also developed by Rivest after potential weaknesses 

were reported in MD4; this scheme is similar to MD4 but is slower because 

more manipulation is made to the original data. MD5 has been implemented 

in a large number of products although several weaknesses in the algorithm 

were demonstrated by German cryptographer Hans Dobbertin in 1996 

("Cryptanalysis of MD5 Compress"). 

 Secure Hash Algorithm (SHA): Algorithm for NIST's Secure Hash Standard (SHS), 

described in FIPS 180-4. 

o SHA-1 produces a 160-bit hash value and was originally published as FIPS 

PUB 180-1 and RFC 3174. It was deprecated by NIST as of the end of 2013 

although it is still widely used. In October 2015, the SHA-1 Freestart 

Collision was announced; see a report by Bruce Schneier and the 

developers of the attack. 

o SHA-2, originally described in FIPS PUB 180-2 and eventually replaced by 

FIPS PUB 180-3 (and FIPS PUB 180-4), comprises five algorithms in the 

SHS: SHA-1 plus SHA-224, SHA-256, SHA-384, and SHA-512 which can 

produce hash values that are 224, 256, 384, or 512 bits in length, 

respectively. SHA-2 recommends use of SHA-1, SHA-224, and SHA-256 

for messages less than 264 bits in length, and employs a 512 bit block size; 

SHA-384 and SHA-512 are recommended for messages less than 2128 bits in 

length, and employs a 1,024 bit block size. FIPS PUB 180-4 also introduces 

the concept of a truncated hash in SHA-512/t, a generic name referring to a 

hash value based upon the SHA-512 algorithm that has been truncated 

to tbits; SHA-512/224 and SHA-512/256 are specifically described. SHA-

224, -256, -384, and -512 are also described in RFC 4634. 

o SHA-3 is the current SHS algorithm. Although there had not been any 

successful attacks on SHA-2, NIST decided that having an alternative to 

SHA-2 using a different algorithm would be prudent. In 2007, they launched 

a SHA-3 Competition to find that alternative; a list of submissions can be 

found at The SHA-3 Zoo. In 2012, NIST announced that after reviewing 64 

submissions, the winner was KECCAK (pronounced "catch-ack"), a family of 

hash algorithms based upon sponge functions. The NIST version can 

support hash output sizes of 256 and 512 bits. 

 RIPEMD: A series of message digests that initially came from the RIPE (RACE 

Integrity Primitives Evaluation) project. RIPEMD-160 was designed by Hans 

Dobbertin, Antoon Bosselaers, and Bart Preneel, and optimized for 32-bit 

processors to replace the then-current 128-bit hash functions. Other versions 

include RIPEMD-256, RIPEMD-320, and RIPEMD-128. 

 HAVAL (HAsh of VAriable Length): Designed by Y. Zheng, J. Pieprzyk and J. 

Seberry, a hash algorithm with many levels of security. HAVAL can create hash 

values that are 128, 160, 192, 224, or 256 bits in length. More details can be found 

in a AUSCRYPT '92 paper. 

 Whirlpool: Designed by V. Rijmen (co-inventor of Rijndael) and P.S.L.M. Barreto, 

Whirlpool is one of two hash functions endorsed by the New European Schemes 

for Signatures, Integrity, and Encryption (NESSIE) competition (the other being 

SHA). Whirlpool operates on messages less than 2256 bits in length and produces a 
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message digest of 512 bits. The design of this hash function is very different than 

that of MD5 and SHA-1, making it immune to the same attacks as on those hashes. 

 Tiger: Designed by Ross Anderson and Eli Biham, Tiger is designed to be secure, 

run efficiently on 64-bit processors, and easily replace MD4, MD5, SHA and 

SHA-1 in other applications. Tiger/192 produces a 192-bit output and is 

compatible with 64-bit architectures; Tiger/128 and Tiger/160 produce a hash of 

length 128 and 160 bits, respectively, to provide compatibility with the other hash 

functions mentioned above. 

 eD2k: Named for the EDonkey2000 Network (eD2K), the eD2k hash is a root 

hash of an MD4 hash list of a given file. A root hash is used on peer-to-peer file 

transfer networks, where a file is broken into chunks; each chunk has its own MD4 

hash associated with it and the server maintains a file that contains the hash list of 

all of the chunks. The root hash is the hash of the hash list file. 

(Readers might be interested in HashCalc, a Windows-based program that calculates hash values 

using a dozen algorithms, including MD5, SHA-1 and several variants, RIPEMD-160, and 

Tiger. Command line utilities that calculate hash values include sha_verify by Dan Mares 

[Windows; supports MD5, SHA-1, SHA-2] and md5deep [cross-platform; supports MD5, SHA-

1, SHA-256, Tiger, and Whirlpool].) 

Hash functions are sometimes misunderstood and some sources claim that no two files can have 

the same hash value. This is, in fact, not correct. Consider a hash function that provides a 128-

bit hash value. There are, obviously, 2128 possible hash values. But there are an infinite number 

of possible files and ∞ >> 2128. Therefore, there have to be multiple files — in fact, there have to 

be an infinite number of files! — that have the same 128-bit hash value. 

The difficulty is not necessarily in finding two files with the same hash, but in finding a second 

file that has the same hash value as a given first file. Consider this example. A human head has, 

generally, no more than ~150,000 hairs. Since there are more than 7 billion people on earth, we 

know that there are a lot of people with the same number of hairs on their heads. Finding two 

people with the same number of hairs, then, would be relatively simple. The harder problem is 

choosing one person (say, you, the reader) and then finding another person who has the same 

number of hairs on their head. 

This is somewhat similar to the Birthday Problem. We know from probability that if you choose 

a random group of ~23 people, the probability is about 50% that two will share a birthday (the 

probability goes up to 99.9% with a group of 70 people). However, if you select one person in 

the group of 23 and try to find a match to that person, the probability is only about 6% of finding 

a match; you'd need a group of 253 for a 50% probability of a shared birthday (and a group of 

more than 4,000 to obtain a 99.9% probability). 

What is hard to do is to try to create a file that has a given hash value so as to force a hash value 

collision — which is the reason that hash functions are used extensively for information security 

and computer forensics applications. Alas, researchers in 2004 found that practical collision 

attacks could be launched on MD5, SHA-1, and other hash algorithms. Readers interested in this 

problem should read the following: 

 AccessData. (2006, April). MD5 Collisions: The Effect on Computer Forensics. 

AccessData White Paper. 
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Readers are also referred to the Eindhoven University of Technology HashClash Project Web 

site. An excellent overview of the situation with hash collisions (circa 2005) can be found 

in RFC 4270 (by P. Hoffman and B. Schneier, November 2005). And for additional information 

on hash functions, see David Hopwood's MessageDigest Algorithms page. Finally, for an 

interesting twist on this discussion, read about the Nostradamus attack reported at Predicting the 

winner of the 2008 US Presidential Elections using a Sony PlayStation 3 (by M. Stevens, A.K. 

Lenstra, and B. de Weger, November 2007). 

Certain extensions of hash functions are used for a variety of information security and digital 

forensics applications, such as: 

 Hash libraries are sets of hash values corresponding to known files. A hash library 

of known good files, for example, might be a set of files known to be a part of an 

operating system, while a hash library of known bad files might be of a set of 

known child pornographic images. 

 Rolling hashes refer to a set of hash values that are computed based upon a fixed-

length "sliding window" through the input. As an example, a hash value might be 

computed on bytes 1-10 of a file, then on bytes 2-11, 3-12, 4-13, etc. 

 Fuzzy hashes are an area of intense research and represent hash values that 

represent two inputs that are similar. Fuzzy hashes are used to detect documents, 

images, or other files that are close to each other with respect to content. See 

"Fuzzy Hashing" (PDF) by Jesse Kornblum for a good treatment of this topic. 

3.4. Why Three Encryption Techniques? 

So, why are there so many different types of cryptographic schemes? Why can't we do 

everything we need with just one? 

The answer is that each scheme is optimized for some specific application(s). Hash functions, 

for example, are well-suited for ensuring data integrity because any change made to the contents 

of a message will result in the receiver calculating a different hash value than the one placed in 
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the transmission by the sender. Since it is highly unlikely that two different messages will yield 

the same hash value, data integrity is ensured to a high degree of confidence. 

Secret key cryptography, on the other hand, is ideally suited to encrypting messages, thus 

providing privacy and confidentiality. The sender can generate a session key on a per-message 

basis to encrypt the message; the receiver, of course, needs the same session key to decrypt the 

message. 

Key exchange, of course, is a key application of public-key cryptography (no pun intended). 

Asymmetric schemes can also be used for non-repudiation and user authentication; if the 

receiver can obtain the session key encrypted with the sender's private key, then only this sender 

could have sent the message. Public-key cryptography could, theoretically, also be used to 

encrypt messages although this is rarely done because secret-key cryptography operates about 

1000 times faster than public-key cryptography. 

 

  

FIGURE 2: Sample application of the three cryptographic techniques for secure communication. 

 

Figure 2 puts all of this together and shows how a hybrid cryptographic scheme combines all of 

these functions to form a secure transmission comprising digital signature and digital envelope. 

In this example, the sender of the message is Alice and the receiver is Bob. 

A digital envelope comprises an encrypted message and an encrypted session key. Alice uses 

secret key cryptography to encrypt her message using the session key, which she generates at 



random with each session. Alice then encrypts the session key using Bob's public key. The 

encrypted message and encrypted session key together form the digital envelope. Upon receipt, 

Bob recovers the session secret key using his private key and then decrypts the encrypted 

message. 

The digital signature is formed in two steps. First, Alice computes the hash value of her 

message; next, she encrypts the hash value with her private key. Upon receipt of the digital 

signature, Bob recovers the hash value calculated by Alice by decrypting the digital signature 

with Alice's public key. Bob can then apply the hash function to Alice's original message, which 

he has already decrypted (see previous paragraph). If the resultant hash value is not the same as 

the value supplied by Alice, then Bob knows that the message has been altered; if the hash 

values are the same, Bob should believe that the message he received is identical to the one that 

Alice sent. 

This scheme also provides nonrepudiation since it proves that Alice sent the message; if the hash 

value recovered by Bob using Alice's public key proves that the message has not been altered, 

then only Alice could have created the digital signature. Bob also has proof that he is the 

intended receiver; if he can correctly decrypt the message, then he must have correctly 

decrypted the session key meaning that his is the correct private key. 

This diagram purposely suggests a cryptosystem where the session key is used for just a single 

session. Even if this session key is somehow broken, only this session will be compromised; the 

session key for the next session is in no way based upon the key for this session, just as this 

session's key is not dependent on the key from the previous session. This is known as Perfect 

Forward Secrecy; you might lose one session key due to a compromise but you won't lose all of 

them. (This was an issue in the 2014 OpenSSL vulnerability known as Heartbleed.) 

3.5. The Significance of Key Length 

In a 1998 article in the industry literature, a writer made the claim that 56-bit keys did not 

provide as adequate protection for DES at that time as they did in 1975 because computers were 

1000 times faster in 1998 than in 1975. Therefore, the writer went on, we needed 56,000-bit 

keys in 1998 instead of 56-bit keys to provide adequate protection. The conclusion was then 

drawn that because 56,000-bit keys are infeasible (true), we should accept the fact that we have 

to live with weak cryptography (false!). The major error here is that the writer did not take into 

account that the number of possible key values double whenever a single bit is added to the key 

length; thus, a 57-bit key has twice as many values as a 56-bit key (because 257 is two times 256). 

In fact, a 66-bit key would have 1024 times more values than a 56-bit key. 

But this does bring up the issue, what is the precise significance of key length as it affects the 

level of protection? 

In cryptography, size does matter. The larger the key, the harder it is to crack a block of 

encrypted data. The reason that large keys offer more protection is almost obvious; computers 

have made it easier to attack ciphertext by using brute force methods rather than by attacking the 

mathematics (which are generally well-known anyway). With a brute force attack, the attacker 

merely generates every possible key and applies it to the ciphertext. Any resulting plaintext that 

makes sense offers a candidate for a legitimate key. This was the basis, of course, of the EFF's 

attack on DES. 

http://en.wikipedia.org/wiki/Forward_secrecy
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Until the mid-1990s or so, brute force attacks were beyond the capabilities of computers that 

were within the budget of the attacker community. By that time, however, significant compute 

power was typically available and accessible. General-purpose computers such as PCs were 

already being used for brute force attacks. For serious attackers with money to spend, such as 

some large companies or governments, Field Programmable Gate Array (FPGA) or Application-

Specific Integrated Circuits (ASIC) technology offered the ability to build specialized chips that 

could provide even faster and cheaper solutions than a PC. (As an example, the AT&T 

Optimized Reconfigurable Cell Array (ORCA) FPGA chip cost about $200 and could test 30 

million DES keys per second, while a $10 ASIC chip could test 200 million DES keys per 

second; compare that to a PC which might be able to test 40,000 keys per second.) Distributed 

attacks, harnessing the power of between tens and tens of thousands of powerful CPUs, are now 

commonly employed to try to brute-force crypto keys. 

The table below — from a 1995 article discussing both why exporting 40-bit keys was, in 

essence, no crypto at all and why DES' days were numbered — shows what DES key sizes were 

needed to protect data from attackers with different time and financial resources. This 

information was not merely academic; one of the basic tenets of any security system is to have 

an idea of what you are protecting and from who are you protecting it! The table clearly shows 

that a 40-bit key was essentially worthless against even the most unsophisticated attacker. On 

the other hand, 56-bit keys were fairly strong unless you might be subject to some pretty serious 

corporate or government espionage. But note that even 56-bit keys were clearly on the decline in 

their value and that the times in the table were worst cases. 

TABLE 1. Minimum Key Lengths for Symmetric Ciphers (1995). 

Type of Attacker Budget Tool 

Time and Cost 

Per Key Recovered 
Key Length Needed 

For Protection 

In Late-1995 40 bits 56 bits 

Pedestrian Hacker 

Tiny 

Scavenged 

computer 

time 

1 week Infeasible 45 

$400 FPGA 
5 hours 

($0.08) 

38 years 

($5,000) 
50 

Small Business $10,000 FPGA 
12 minutes 

($0.08) 

18 months 

($5,000) 
55 

Corporate Department $300K 

FPGA 
24 seconds 

($0.08) 

19 days 

($5,000) 
60 

ASIC 
0.18 seconds 

($0.001) 

3 hours 

($38) 

Big Company $10M 

FPGA 
7 seconds 

($0.08) 

13 hours 

($5,000) 
70 

ASIC 
0.005 seconds 

($0.001) 

6 minutes 

($38) 

Intelligence Agency $300M ASIC 
0.0002 seconds 

($0.001) 

12 seconds 

($38) 
75 

 



So, how big is big enough? DES, invented in 1975, was still in use at the turn of the century, 

nearly 25 years later. If we take that to be a design criteria (i.e., a 20-plus year lifetime) and we 

believe Moore's Law ("computing power doubles every 18 months"), then a key size extension 

of 14 bits (i.e., a factor of more than 16,000) should be adequate. The 1975 DES proposal 

suggested 56-bit keys; by 1995, a 70-bit key would have been required to offer equal protection 

and an 85-bit key necessary by 2015. 

A 256- or 512-bit SKC key will probably suffice for some time because that length keeps us 

ahead of the brute force capabilities of the attackers. Note that while a large key is good, a huge 

key may not always be better; for example, expanding PKC keys beyond the current 2048- or 

4096-bit lengths doesn't add any necessary protection at this time. Weaknesses in cryptosystems 

are largely based upon key management rather than weak keys. 

Much of the discussion above, including the table, is based on the paper "Minimal Key Lengths 

for Symmetric Ciphers to Provide Adequate Commercial Security" by M. Blaze, W. Diffie, R.L. 

Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener. 

The most effective large-number factoring methods today use a mathematical Number Field 

Sieve to find a certain number of relationships and then uses a matrix operation to solve a linear 

equation to produce the two prime factors. The sieve step actually involves a large number of 

operations that can be performed in parallel; solving the linear equation, however, requires a 

supercomputer. Indeed, finding the solution to the RSA-140 challenge in February 1999 — 

factoring a 140-digit (465-bit) prime number — required 200 computers across the Internet 

about 4 weeks for the first step and a Cray computer 100 hours and 810 MB of memory to do 

the second step. 

In early 1999, Shamir (of RSA fame) described a new machine that could increase factorization 

speed by 2-3 orders of magnitude. Although no detailed plans were provided nor is one known 

to have been built, the concepts of TWINKLE (The Weizmann Institute Key Locating 

Engine) could result in a specialized piece of hardware that would cost about $5000 and have 

the processing power of 100-1000 PCs. There still appear to be many engineering details that 

have to be worked out before such a machine could be built. Furthermore, the hardware 

improves the sieve step only; the matrix operation is not optimized at all by this design and the 

complexity of this step grows rapidly with key length, both in terms of processing time and 

memory requirements. Nevertheless, this plan conceptually puts 512-bit keys within reach of 

being factored. Although most PKC schemes allow keys that are 1024 bits and longer, Shamir 

claims that 512-bit RSA keys "protect 95% of today's E-commerce on the Internet." (See Bruce 

Schneier's Crypto-Gram (May 15, 1999) for more information, as well as the comments 

from RSA Labs.) 

It is also interesting to note that while cryptography is good and strong cryptography is better, 

long keys may disrupt the nature of the randomness of data files. Shamir and van Someren 

("Playing hide and seek with stored keys") have noted that a new generation of viruses can be 

written that will find files encrypted with long keys, making them easier to find by intruders 

and, therefore, more prone to attack. 

Finally, U.S. government policy has tightly controlled the export of crypto products since World 

War II. Until the mid-1990s, export outside of North America of cryptographic products using 

keys greater than 40 bits in length was prohibited, which made those products essentially 

worthless in the marketplace, particularly for electronic commerce; today, crypto products are 

http://www.schneier.com/paper-keylength.html
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widely available on the Internet without restriction. The U.S. Department of Commerce Bureau 

of Industry and Security maintains an Encryption FAQ web page with more information about 

the current state of encryption registration. 

On a related topic, public key crypto schemes can be used for several purposes, including key 

exchange, digital signatures, authentication, and more. In those PKC systems used for SKC key 

exchange, the PKC key lengths are chosen so to be resistant to some selected level of attack. 

The length of the secret keys exchanged via that system have to have at least the same level of 

attack resistance. Thus, the three parameters of such a system — system strength, secret key 

strength, and public key strength — must be matched. This topic is explored in more detail 

in Determining Strengths For Public Keys Used For Exchanging Symmetric Keys (RFC 3766). 

 

4. TRUST MODELS 

Secure use of cryptography requires trust. While secret key cryptography can ensure message 

confidentiality and hash codes can ensure integrity, none of this works without trust. In SKC, 

Alice and Bob had to share a secret key. PKC solved the secret distribution problem, but how 

does Alice really know that Bob is who he says he is? Just because Bob has a public and private 

key, and purports to be "Bob," how does Alice know that a malicious person (Mallory) is not 

pretending to be Bob? 

There are a number of trust models employed by various cryptographic schemes. This section 

will explore three of them: 

 The web of trust employed by Pretty Good Privacy (PGP) users, who hold their 

own set of trusted public keys. 

 Kerberos, a secret key distribution scheme using a trusted third party. 

 Certificates, which allow a set of trusted third parties to authenticate each other 

and, by implication, each other's users. 

Each of these trust models differs in complexity, general applicability, scope, and scalability. 

4.1. PGP Web of Trust 

Pretty Good Privacy (described more below in Section 5.5) is a widely used private e-mail 

scheme based on public key methods. A PGP user maintains a local keyring of all their known 

and trusted public keys. The user makes their own determination about the trustworthiness of a 

key using what is called a "web of trust." 

If Alice needs Bob's public key, Alice can ask Bob for it in another e-mail or, in many cases, 

download the public key from an advertised server; this server might a well-known PGP key 

repository or a site that Bob maintains himself. In fact, Bob's public key might be stored or listed 

in many places. (The author's public key, for example, can be found 

at http://www.garykessler.net/pubkey.html.) Alice is prepared to believe that Bob's public key, as 

stored at these locations, is valid. 

Suppose Carol claims to hold Bob's public key and offers to give the key to Alice. How does 

Alice know that Carol's version of Bob's key is valid or if Carol is actually giving Alice a key 

http://www.bis.doc.gov/index.php/policy-guidance/encryption/encryption-faqs
ftp://ftp.rfc-editor.org/in-notes/rfc3766.txt
http://www.garykessler.net/library/crypto.html#pgp
http://www.garykessler.net/pubkey.html


that will allow Mallory access to messages? The answer is, "It depends." If Alice trusts Carol 

and Carol says that she thinks that her version of Bob's key is valid, then Alice may — 

at her option — trust that key. And trust is not necessarily transitive; if Dave has a copy of Bob's 

key and Carol trusts Dave, it does not necessarily follow that Alice trusts Dave even if she does 

trust Carol. 

The point here is that who Alice trusts and how she makes that determination is strictly up to 

Alice. PGP makes no statement and has no protocol about how one user determines whether 

they trust another user or not. In any case, encryption and signatures based on public keys can 

only be used when the appropriate public key is on the user's keyring. 

4.2. Kerberos 

Kerberos is a commonly used authentication scheme on the Internet. Developed by MIT's 

Project Athena, Kerberos is named for the three-headed dog who, according to Greek 

mythology, guards the entrance of Hades (rather than the exit, for some reason!). 

Kerberos employs a client/server architecture and provides user-to-server authentication rather 

than host-to-host authentication. In this model, security and authentication will be based on 

secret key technology where every host on the network has its own secret key. It would clearly 

be unmanageable if every host had to know the keys of all other hosts so a secure, trusted host 

somewhere on the network, known as a Key Distribution Center (KDC), knows the keys for all 

of the hosts (or at least some of the hosts within a portion of the network, called a realm). In this 

way, when a new node is brought online, only the KDC and the new node need to be configured 
with the node's key; keys can be distributed physically or by some other secure means.  

http://web.mit.edu/kerberos/


  

FIGURE 3: Kerberos architecture. 

 

The Kerberos Server/KDC has two main functions (Figure 3), known as the Authentication 

Server (AS) and Ticket-Granting Server (TGS). The steps in establishing an authenticated 

session between an application client and the application server are: 

1. The Kerberos client software establishes a connection with the Kerberos server's 

AS function. The AS first authenticates that the client is who it purports to be. The 

AS then provides the client with a secret key for this login session (the TGS session 

key) and a ticket-granting ticket (TGT), which gives the client permission to talk to 

the TGS. The ticket has a finite lifetime so that the authentication process is 

repeated periodically. 

2. The client now communicates with the TGS to obtain the Application Server's key 

so that it (the client) can establish a connection to the service it wants. The client 

supplies the TGS with the TGS session key and TGT; the TGS responds with an 

application session key (ASK) and an encrypted form of the Application Server's 

secret key; this secret key is never sent on the network in any other form. 



3. The client has now authenticated itself and can prove its identity to the Application 

Server by supplying the Kerberos ticket, application session key, and encrypted 

Application Server secret key. The Application Server responds with similarly 

encrypted information to authenticate itself to the client. At this point, the client 

can initiate the intended service requests (e.g., Telnet, FTP, HTTP, or e-commerce 

transaction session establishment). 

The current version of this protocol is Kerberos V5 (described in RFC 1510). While the details 

of their operation, functional capabilities, and message formats are different, the conceptual 

overview above pretty much holds for both. One primary difference is that Kerberos V4 uses 

only DES to generate keys and encrypt messages, while V5 allows other schemes to be 

employed (although DES is still the most widely algorithm used). 

4.3. Public Key Certificates and Certificate Authorities 

Certificates and Certificate Authorities (CA) are necessary for widespread use of cryptography 

for e-commerce applications. While a combination of secret and public key cryptography can 

solve the business issues discussed above, crypto cannot alone address the trust issues that must 

exist between a customer and vendor in the very fluid, very dynamic e-commerce relationship. 

How, for example, does one site obtain another party's public key? How does a recipient 

determine if a public key really belongs to the sender? How does the recipient know that the 

sender is using their public key for a legitimate purpose for which they are authorized? When 

does a public key expire? How can a key be revoked in case of compromise or loss? 

The basic concept of a certificate is one that is familiar to all of us. A driver's license, credit 

card, or SCUBA certification, for example, identify us to others, indicate something that we are 

authorized to do, have an expiration date, and identify the authority that granted the certificate. 

As complicated as this may sound, it really isn't! Consider driver's licenses. I have one issued by 

the State of Florida. The license establishes my identity, indicates the type of vehicles that I can 

operate and the fact that I must wear corrective lenses while doing so, identifies the issuing 

authority, and notes that I am an organ donor. When I drive in other states, the other 

jurisdictions throughout the U.S. recognize the authority of Florida to issue this "certificate" and 

they trust the information it contains. When I leave the U.S., everything changes. When I am in 

Aruba, Australia, Canada, Israel, and many other countries, they will accept not the Florida 

license, per se, but any license issued in the U.S. This analogy represents the certificate trust 

chain, where even certificates carry certificates. 

For purposes of electronic transactions, certificates are digital documents. The specific functions 

of the certificate include: 

 Establish identity: Associate, or bind, a public key to an individual, organization, 

corporate position, or other entity. 

 Assign authority: Establish what actions the holder may or may not take based 

upon this certificate. 

 Secure confidential information (e.g., encrypting the session's symmetric key for 

data confidentiality). 

Typically, a certificate contains a public key, a name, an expiration date, the name of the 

authority that issued the certificate (and, therefore, is vouching for the identity of the user), a 

http://www.rfc-editor.org/rfc/rfc1510.txt


serial number, any pertinent policies describing how the certificate was issued and/or how the 

certificate may be used, the digital signature of the certificate issuer, and perhaps other 

information.  

  

FIGURE 4: VeriSign Class 3 certificate. 

 

A sample abbreviated certificate is shown in Figure 4. This is a typical certificate found in a 

browser, in this case, Mozilla Firefox (Mac OS X). While this is a certificate issued by 

VeriSign, many root-level certificates can be found shipped with browsers. When the browser 

makes a connection to a secure Web site, the Web server sends its public key certificate to the 

browser. The browser then checks the certificate's signature against the public key that it has 

stored; if there is a match, the certificate is taken as valid and the Web site verified by this 

certificate is considered to be "trusted." 

TABLE 2. Contents of an X.509 V3 Certificate. 

version number 

certificate serial number 

signature algorithm identifier 

issuer's name and unique identifier 

validity (or operational) period 

subject's name and unique identifier 

subject public key information 

standard extensions 

certificate appropriate use definition 

key usage limitation definition 

certificate policy information 

other extensions 

Application-specific 

CA-specific 

 



The most widely accepted certificate format is the one defined in International 

Telecommunication Union Telecommunication Standardization Sector (ITU-T) 

Recommendation X.509. Rec. X.509 is a specification used around the world and any 

applications complying with X.509 can share certificates. Most certificates today comply with 

X.509 Version 3 and contain the information listed in Table 2. 

Certificate authorities are the repositories for public-keys and can be any agency that issues 

certificates. A company, for example, may issue certificates to its employees, a 

college/university to its students, a store to its customers, an Internet service provider to its 

users, or a government to its constituents. 

When a sender needs an intended receiver's public key, the sender must get that key from the 

receiver's CA. That scheme is straight-forward if the sender and receiver have certificates issued 

by the same CA. If not, how does the sender know to trust the foreign CA? One industry wag 

has noted, about trust: "You are either born with it or have it granted upon you." Thus, some 

CAs will be trusted because they are known to be reputable, such as the CAs operated by AT&T 

Services, Comodo, DigiNet (formerly GTE Cybertrust), EnTrust, Symantec (formerly 

VeriSign), and Thawte. CAs, in turn, form trust relationships with other CAs. Thus, if a user 

queries a foreign CA for information, the user may ask to see a list of CAs that establish a 

"chain of trust" back to the user. 

One major feature to look for in a CA is their identification policies and procedures. When a 

user generates a key pair and forwards the public key to a CA, the CA has to check the sender's 

identification and takes any steps necessary to assure itself that the request is really coming from 

the advertised sender. Different CAs have different identification policies and will, therefore, be 

trusted differently by other CAs. Verification of identity is just one of many issues that are part 

of a CA's Certification Practice Statement (CPS) and policies; other issues include how the CA 

protects the public keys in its care, how lost or compromised keys are revoked, and how the CA 

protects its own private keys. 

4.4. Summary 

The paragraphs above describe three very different trust models. It is hard to say that any one is 

better than the others; it depend upon your application. One of the biggest and fastest growing 

applications of cryptography today, though, is electronic commerce (e-commerce), a term that 

itself begs for a formal definition. 

PGP's web of trust is easy to maintain and very much based on the reality of users as people. 

The model, however, is limited; just how many public keys can a single user reliably store and 

maintain? And what if you are using the "wrong" computer when you want to send a message 

and can't access your keyring? How easy it is to revoke a key if it is compromised? PGP may 

also not scale well to an e-commerce scenario of secure communication between total strangers 

on short-notice. 

Kerberos overcomes many of the problems of PGP's web of trust, in that it is scalable and its 

scope can be very large. However, it also requires that the Kerberos server have a 

priori knowledge of all client systems prior to any transactions, which makes it unfeasible for 

"hit-and-run" client/server relationships as seen in e-commerce. 

https://ssl.comodo.com/
https://www.digicert.com/
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Certificates and the collection of CAs will form a Public Key Infrastructure (PKI). In the early 

days of the Internet, every host had to maintain a list of every other host; the Domain Name 

System (DNS) introduced the idea of a distributed database for this purpose and the DNS is one 

of the key reasons that the Internet has grown as it has. A PKI will fill a similar void in the e-

commerce and PKC realm. 

While certificates and the benefits of a PKI are most often associated with electronic commerce, 

the applications for PKI are much broader and include secure electronic mail, payments and 

electronic checks, Electronic Data Interchange (EDI), secure transfer of Domain Name System 

(DNS) and routing information, electronic forms, and digitally signed documents. A single 

"global PKI" is still many years away, that is the ultimate goal of today's work as international 

electronic commerce changes the way in which we do business in a similar way in which the 

Internet has changed the way in which we communicate. 

 

5. CRYPTOGRAPHIC ALGORITHMS IN ACTION 

The paragraphs above have provided an overview of the different types of cryptographic 

algorithms, as well as some examples of some available protocols and schemes. Table 3 

provides a list of some other noteworthy schemes employed — or proposed — for a variety of 

functions, most notably electronic commerce and secure communication. The paragraphs below 

will show several real cryptographic applications that many of us employ (knowingly or not) 

everyday for password protection and private communication. Some of the schemes described 

below never were widely deployed but are still historically interesting, thus remain included 

here. 

 

TABLE 3. Other Crypto Algorithms and Systems of Note. 

Capstone A now-defunct U.S. National Institute of Standards and 

Technology (NIST) and National Security Agency (NSA) 

project under the Bush Sr. and Clinton administrations for 

publicly available strong cryptography with keys escrowed by 

the government (NIST and the Treasury Dept.). Capstone 

included in one or more tamper-proof computer chips for 

implementation (Clipper), a secret key encryption algorithm 

(Skipjack), digital signature algorithm (DSA), key exchange 

algorithm (KEA), and hash algorithm (SHA). 

Challenge-Handshake 

Authentication 

Protocol (CHAP) 

An authentication scheme that allows one party to prove who 

they are to a second party by demonstrating knowledge of a 

shared secret without actually divulging that shared secret to 

a third party who might be listening. Described inRFC 1994. 

Clipper The computer chip that would implement the Skipjack 

encryption scheme. The Clipper chip was to have had a 

deliberate backdoor so that material encrypted with this 

device would not be beyond the government's reach. 

Described in 1993, Clipper was dead by 1996. See also 

EPIC's The Clipper Chip Web page. 

https://en.wikipedia.org/wiki/Capstone_%28cryptography%29
https://en.wikipedia.org/wiki/Challenge-Handshake_Authentication_Protocol
https://en.wikipedia.org/wiki/Challenge-Handshake_Authentication_Protocol
https://en.wikipedia.org/wiki/Challenge-Handshake_Authentication_Protocol
http://www.rfc-editor.org/rfc/rfc1994.txt
https://en.wikipedia.org/wiki/Clipper_chip
http://www.epic.org/crypto/clipper/


Derived Unique Key 

Per Transaction 

(DUKPT)  

A key management scheme used for debit and credit card 

verification with point-of-sale (POS) transaction systems, 

automated teller machines (ATMs), and other financial 

applications. In DUKPT, a unique key is derived for each 

transaction based upon a fixed, shared key in such a way that 

knowledge of one derived key does not easily yield 

knowledge of other keys (including the fixed key). Therefore, 

if one of the derived keys is compromised, neither past nor 

subsequent transactions are endangered. DUKPT is specified 

in American National Standard (ANS) ANSI X9.24-

1:2009 Retail Financial Services Symmetric Key 

Management Part 1: Using Symmetric Techniques) and can 

be purchased at the ANSI X9.24 Web page. 

Escrowed Encryption 

Standard (EES)  

Largely unused, a controversial crypto scheme employing the 

SKIPJACK secret key crypto algorithm and a Law 

Enforcement Access Field (LEAF) creation method. LEAF 

was one part of the key escrow system and allowed for 

decryption of ciphertext messages that had been intercepted 

by law enforcement agencies. Described more in FIPS 

185 (archived; no longer in force). 

Federal Information 

Processing Standards 

(FIPS)  

These computer security- and crypto-related FIPS are 

produced by the U.S. National Institute of Standards and 

Technology (NIST) as standards for the U.S. Government. 

Fortezza A PCMCIA card developed by NSA that implements the 

Capstone algorithms, intended for use with the Defense 

Messaging Service (DMS). Originally called Tessera. 

GOST GOST is a family of algorithms that is defined in the Russian 

cryptographic standards. Although most of the specifications 

are written in Russian, a series of RFCs describe some of the 

aspects so that the algorithms can be used effectively in 

Internet applications: 

 RFC 4357: Additional Cryptographic Algorithms for 

Use with GOST 28147-89, GOST R 34.10-94, GOST 

R 34.10-2001, and GOST R 34.11-94 Algorithms 

 RFC 5830: GOST 28147-89: Encryption, Decryption, 

and Message Authentication Code (MAC) Algorithms 

 RFC 6986: GOST R 34.11-2012: Hash Function 

Algorithm 

 RFC 7091: GOST R 34.10-2012: Digital Signature 

Algorithm (Updates RFC 5832: GOST R 34.10-2001) 

 RFC 7801: GOST R 34.12-2015: Block Cipher 

"Kuznyechik" 

 RFC 7836: Guidelines on the Cryptographic 

Algorithms to Accompany the Usage of Standards 

GOST R 34.10-2012 and GOST R 34.11-2012 

Identity-Based 

Encryption (IBE)  

Identity-Based Encryption was first proposed by Adi Shamir 

in 1984 and is a key authentication system where the public 

key can be derived from some unique information based upon 

the user's identity. In 2001, Dan Boneh (Stanford) and Matt 
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http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.24-1%3A2009
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http://csrc.nist.gov/publications/fips/fips185/fips185.pdf
http://csrc.nist.gov/publications/fips/fips185/fips185.pdf
http://csrc.nist.gov/publications/fips/index.html
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https://en.wikipedia.org/wiki/Fortezza
http://www.ieee802.org/11/Documents/DocumentArchives/1994_docs/1194011_scan.pdf
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http://www.rfc-editor.org/rfc/rfc4357.txt
http://www.rfc-editor.org/rfc/rfc5830.txt
http://www.rfc-editor.org/rfc/rfc6986.txt
http://www.rfc-editor.org/rfc/rfc7091.txt
http://www.rfc-editor.org/rfc/rfc5832.txt
http://www.rfc-editor.org/rfc/rfc7801.txt
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http://crypto.stanford.edu/ibe/
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Franklin (U.C., Davis) developed a practical implementation 

of IBE based on elliptic curves and a mathematical construct 

called the Weil Pairing. In that year, Clifford Cocks (GCHQ) 

also described another IBE solution based on quadratic 

residues in composite groups. 

 

RFC 5091: Identity-Based Cryptography Standard (IBCS) #1: 

Describes an implementation of IBE using Boneh-Franklin 

(BF) and Boneh-Boyen (BB1) Identity-based Encryption. 

IP Security Protocol 

(IPsec)  

The IPsec protocol suite is used to provide privacy and 

authentication services at the IP layer. An overview of the 

protocol suite and of the documents comprising IPsec can be 

found in RFC 2411. Other documents include: 

 RFC 4301: IP security architecture. 

 RFC 4302: IP Authentication Header (AH), one of the 

two primary IPsec functions; AH provides 

connectionless integrity and data origin authentication 

for IP datagrams and protects against replay attacks. 

 RFC 4303: IP Encapsulating Security Payload (ESP), 

the other primary IPsec function; ESP provides a 

variety of security services within IPsec. 

 RFC 4304: Extended Sequence Number (ESN) 

Addendum, allows for negotiation of a 32- or 64- bit 

sequence number, used to detect replay attacks. 

 RFC 4305: Cryptographic algorithm implementation 

requirements for ESP and AH. 

 RFC 5996: The Internet Key Exchange (IKE) 

protocol, version 2, providing for mutual 

authentication and establishing and maintaining 

security associations. 

o IKE v1 was described in three separate 

documents, RFC 2407 (application of 

ISAKMP to IPsec), RFC 2408 (ISAKMP, a 

framework for key management and security 

associations), and RFC 2409 (IKE, using part 

of Oakley and part of SKEME in conjunction 

with ISAKMP to obtain authenticated keying 

material for use with ISAKMP, and for other 

security associations such as AH and ESP). 

IKE v1 is obsoleted with the introdcution of 

IKEv2. 

 RFC 4307: Cryptographic algoritms used with IKEv2. 

 RFC 4308: Crypto suites for IPsec, IKE, and IKEv2. 

 RFC 4309: The use of AES in CBC-MAC mode with 

IPsec ESP. 

 RFC 4312: The use of the Camellia cipher algorithm 

in IPsec. 

 RFC 4359: The Use of RSA/SHA-1 Signatures within 

Encapsulating Security Payload (ESP) and 

Authentication Header (AH). 

 RFC 4434: Describes AES-XCBC-PRF-128, a 

pseudo-random function derived from the AES for use 

with IKE. 
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 RFC 2403: Describes use of the HMAC with MD5 

algorithm for data origin authentication and integrity 

protection in both AH and ESP. 

 RFC 2405: Describes use of DES-CBC (DES in 

Cipher Block Chaining Mode) for confidentiality in 

ESP. 

 RFC 2410: Defines use of the NULL encryption 

algorithm (i.e., provides authentication and integrity 

without confidentiality) in ESP. 

 RFC 2412: Describes OAKLEY, a key determination 

and distribution protocol. 

 RFC 2451: Describes use of Cipher Block Chaining 

(CBC) mode cipher algorithms with ESP. 

 RFCs 2522 and 2523: Description of Photuris, a 

session-key management protocol for IPsec. 

In addition, RFC 6379 describes Suite B Cryptographic 

Suites for IPsec and RFC 6380 describes the Suite B profile 

for IPsec. 

IPsec was first proposed for use with IP version 6 (IPv6), but 

can also be employed with the current IP version, IPv4. 

(See more detail about IPsec below in Section 5.6.) 

Internet Security 

Association and Key 

Management 

Protocol 

(ISAKMP/OAKLEY)  

ISAKMP/OAKLEY provide an infrastructure for Internet 

secure communications. ISAKMP, designed by the National 

Security Agency (NSA) and described in RFC 2408, is a 

framework for key management and security associations, 

independent of the key generation and cryptographic 

algorithms actually employed. The OAKLEY Key 

Determination Protocol, described in RFC 2412, is a key 

determination and distribution protocol using a variation of 

Diffie-Hellman. 

Kerberos  A secret-key encryption and authentication system, designed 

to authenticate requests for network resources within a user 

domain rather than to authenticate messages. Kerberos also 

uses a trusted third-party approach; a client communications 

with the Kerberos server to obtain "credentials" so that it may 

access services at the application server. Kerberos V4 used 

DES to generate keys and encrypt messages; Kerberos V5 

uses DES and other schemes for key generation.  

 

Microsoft added support for Kerberos V5 — with some 

proprietary extensions — in Windows 2000 Active Directory. 

There are many Kerberos articles posted at Microsoft's 

Knowledge Base, notably "Kerberos Explained." 

Keyed-Hash Message 

Authentication Code 

(HMAC)  

A message authentication scheme based upon secret key 

cryptography and the secret key shared between two parties 

rather than public key methods. Described in FIPS 

198 and RFC 2104. (See Section 5.6 below for details on 

HMAC operation.) 
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Message Digest 

Cipher (MDC)  

Invented by Peter Gutman, MDC turns a one-way hash 

function into a block cipher. 

MIME Object 

Security Services 

(MOSS) 

Designed as a successor to PEM to provide PEM-based 

security services to MIME messages. Described in RFC 

1848. Never widely implemented and now defunct. 

NSA Suite B 

Cryptography 

An NSA standard for securing information at the SECRET 

level. Defines use of: 

 Advanced Encryption Standard (AES) with key sizes 

of 128 and 256 bits, per FIPS PUB 197 for encryption 

 The Ephemeral Unified Model and the One-Pass 

Diffie Hellman (referred to as ECDH) using the 

curves with 256 and 384-bit prime moduli, per NIST 

Special Publication 800-56A for key exchange 

 Elliptic Curve Digital Signature Algorithm (ECDSA) 

using the curves with 256 and 384-bit prime moduli, 

perFIPS PUB 186-3 for digital signatures 

 Secure Hash Algorithm (SHA) using 256 and 384 

bits, per FIPS PUB 180-3 for hashing 

RFC 6239 describes Suite B Cryptographic Suites for Secure 

Shell (SSH) and RFC 6379 describes Suite B Cryptographic 

Suites for Secure IP (IPsec). 

Pretty Good Privacy 

(PGP) 

A family of cryptographic routines for e-mail, file, and disk 

encryption developed by Philip Zimmermann. PGP 2.6.x uses 

RSA for key management and digital signatures, IDEA for 

message encryption, and MD5 for computing the message's 

hash value; more information can also be found in RFC 1991. 

PGP 5.x (formerly known as "PGP 3") uses Diffie-

Hellman/DSS for key management and digital signatures; 

IDEA, CAST, or 3DES for message encryption; and MD5 or 

SHA for computing the message's hash value. OpenPGP, 

described in RFC 2440, is an open definition of security 

software based on PGP 5.x. 

(See more detail about PGP below in Section 5.5.) 

Privacy Enhanced 

Mail (PEM) 

An IETF standard for secure electronic mail over the Internet, 

including provisions for encryption (DES), authentication, 

and key management (DES, RSA). Developed by the IETF 

but never widely used. Described in the following RFCs: 

 RFC 1421: Part I, Message Encryption and 

Authentication Procedures 

 RFC 1422: Part II, Certificate-Based Key 

Management 

 RFC 1423: Part III, Algorithms, Modes, and 

Identifiers 

 RFC 1424: Part IV, Key Certification and Related 

Services 

Private Developed by Microsoft for secure communication on the 
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Communication 

Technology (PCT)  

Internet. PCT supported Diffie-Hellman, Fortezza, and RSA 

for key establishment; DES, RC2, RC4, and triple-DES for 

encryption; and DSA and RSA message signatures. Never 

widely used; superceded by SSL and TLS. 

Secure Electronic 

Transaction (SET)  

A communications protocol for securing credit card 

transactions, developed by MasterCard and VISA, in 

cooperation with IBM, Microsoft, RSA, and other companies. 

Merged two other protocols: Secure Electronic Payment 

Protocol (SEPP), an open specification for secure bank card 

transactions over the Internet developed by CyberCash, GTE, 

IBM, MasterCard, and Netscape; and Secure Transaction 

Technology (STT), a secure payment protocol developed by 

Microsoft and Visa International. Supports DES and RC4 for 

encryption, and RSA for signatures, key exchange, and 

public-key encryption of bank card numbers. SET V1.0 is 

described in Book 1, Book 2, and Book 3. SET has been 

superceded by SSL and TLS. 

Secure Hypertext 

Transfer Protocol (S-

HTTP) 

An extension to HTTP to provide secure exchange of 

documents over the World Wide Web. Supported algorithms 

include RSA and Kerberos for key exchange, DES, IDEA, 

RC2, and Triple-DES for encryption. Described in RFC 2660. 

S-HTTP was never as widely used as HTTP over SSL (https). 

Secure Multipurpose 

Internet Mail 

Extensions 

(S/MIME)  

An IETF secure e-mail scheme intended to supercede PEM. 

S/MIME, described in RFCs 2311 and 2312, adds digital 

signature and encryption capability to Internet MIME 

messages. 

Secure Sockets Layer 

(SSL)  

Developed by Netscape Communications to provide 

application-independent security and privacy over the 

Internet. SSL is designed so that protocols such as HTTP, 

FTP (File Transfer Protocol), and Telnet can operate over it 

transparently. SSL allows both server authentication 

(mandatory) and client authentication (optional). RSA is used 

during negotiation to exchange keys and identify the actual 

cryptographic algorithm (DES, IDEA, RC2, RC4, or 3DES) 

to use for the session. SSL also uses MD5 for message 

digests and X.509 public-key certificates. SSL was found to 

be breakable soon after the IETF announced formation of 

group to work on TLS and RFC 6176 specifically prohibits 

the use of SSL v2.0 by TLS clients. SSL version 3.0 is 

described in RFC 6101. All versions of SSL are now 

deprecated in favor of TLS; TLS v1.0 is sometimes referred 

to as "SSL v3.1."  

 

(More detail about SSL can be found below in Section 5.7.) 

Server Gated 

Cryptography (SGC)  

Microsoft extension to SSL that provides strong encryption 

for online banking and other financial applications using RC2 

(128-bit key), RC4 (128-bit key), DES (56-bit key), or 3DES 

(equivalent of 168-bit key). Use of SGC requires a Windows 

NT Server running Internet Information Server (IIS) 4.0 with 

a valid SGC certificate. SGC is available in 32-bit Windows 

versions of Internet Explorer (IE) 4.0, and support for Mac, 
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Unix, and 16-bit Windows versions of IE is expected in the 

future. 

Simple 

Authentication and 

Security Layer 

(SASL)  

A framework for providing authentication and data security 

services in connection-oriented protocols (a la TCP), 

described in RFC 4422. It provides a structured interface and 

allows new protocols to reuse existing authentication 

mechanisms and allows old protocols to make use of new 

mechanisms.  

 

It has been common practice on the Internet to permit 

anonymous access to various services, employing a plain-text 

password using a user name of "anonymous" and a password 

of an email address or some other identifying information. 

New IETF protocols disallow plain-text logins. The 

Anonymous SASL Mechanism (RFC 4505) provides a 

method for anonymous logins within the SASL framework. 

Simple Key-

Management for 

Internet Protocol 

(SKIP)  

Key management scheme for secure IP communication, 

specifically for IPsec, and designed by Aziz and Diffie. SKIP 

essentially defines a public key infrastructure for the Internet 

and even uses X.509 certificates. Most public key 

cryptosystems assign keys on a per-session basis, which is 

inconvenient for the Internet since IP is connectionless. 

Instead, SKIP provides a basis for secure communication 

between any pair of Internet hosts. SKIP can employ DES, 

3DES, IDEA, RC2, RC5, MD5, and SHA-1. As it happened, 

SKIP was not adopted for IPsec; IKE was selected instead. 

Transport Layer 

Security (TLS)  

TLS v1.0 is an IETF specification (RFC 2246) intended to 

replace SSL v3.0. TLS v1.0 employs Triple-DES (secret key 

cryptography), SHA (hash), Diffie-Hellman (key exchange), 

and DSS (digital signatures). TLS v1.0 was vulnerable to 

attack and updated by v1.1 (RFC 4346) and v1.2 (RFC 

5246); v1.3 is the most current working draft specification.  

 

TLS is designed to operate over TCP. The IETF developed 

the Datagram Transport Layer Security (DTLS) protocol to 

operate over UDP. DTLS v1.2 is described in RFC 6347.  

 

(See more detail about TLS below in Section 5.7.) 

TrueCrypt  Open source, multi-platform cryptography software that can 

be used to encrypt a file, partition, or entire disk. One of 

TrueCrypt's more interesting features is that of plausible 

deniability with hidden volumes or hidden operating systems. 

The original Web site, truecrypt.org, suddenly went dark in 

May 2014; alternative sites have popped up, 

includingCipherShed, TCnext, and VeraCrypt.  

 

(See more detail about TrueCrypt below in Section 5.11.) 

X.509 ITU-T recommendation for the format of certificates for the 

public key infrastructure. Certificates map (bind) a user 

identity to a public key. The IETF application of X.509 

certificates is documented in RFC 5280. An Internet X.509 
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Public Key Infrastructure is further defined in RFC 

4210 (Certificate Management Protocols) and RFC 

3647(Certificate Policy and Certification Practices 

Framework). 

 

5.1. Password Protection 

Nearly all modern multiuser computer and network operating systems employ passwords at the 

very least to protect and authenticate users accessing computer and/or network resources. But 

passwords are not typically kept on a host or server in plaintext, but are generally encrypted 

using some sort of hash scheme. 

 

A) /etc/passwd file 

 

 root:Jbw6BwE4XoUHo:0:0:root:/root:/bin/bash 

 carol:FM5ikbQt1K052:502:100:Carol Monaghan:/home/carol:/bin/bash 

 alex:LqAi7Mdyg/HcQ:503:100:Alex Insley:/home/alex:/bin/bash 

 gary:FkJXupRyFqY4s:501:100:Gary Kessler:/home/gary:/bin/bash 

 todd:edGqQUAaGv7g6:506:101:Todd Pritsky:/home/todd:/bin/bash 

 josh:FiH0ONcjPut1g:505:101:Joshua Kessler:/home/webroot:/bin/bash 

 

B.1) /etc/passwd file (with shadow passwords) 

 

 root:x:0:0:root:/root:/bin/bash 

 carol:x:502:100:Carol Monaghan:/home/carol:/bin/bash 

 alex:x:503:100:Alex Insley:/home/alex:/bin/bash 

 gary:x:501:100:Gary Kessler:/home/gary:/bin/bash 

 todd:x:506:101:Todd Pritsky:/home/todd:/bin/bash 

 josh:x:505:101:Joshua Kessler:/home/webroot:/bin/bash 

 

B.2) /etc/shadow file 

 

 root:AGFw$1$P4u/uhLK$l2.HP35rlu65WlfCzq:11449:0:99999:7::: 

 carol:kjHaN%35a8xMM8a/0kMl1?fwtLAM.K&kw.:11449:0:99999:7::: 

 alex:1$1KKmfTy0a7#3.LL9a8H71lkwn/.hH22a:11449:0:99999:7::: 

 gary:9ajlknknKJHjhnu7298ypnAIJKL$Jh.hnk:11449:0:99999:7::: 

 todd:798POJ90uab6.k$klPqMt%alMlprWqu6$.:11492:0:99999:7::: 

 josh:Awmqpsui*787pjnsnJJK%aappaMpQo07.8:11492:0:99999:7::: 

FIGURE 5: Sample entries in Unix/Linux password files. 

Unix/Linux, for example, uses a well-known hash via its crypt() function. Passwords are stored 

in the /etc/passwd file (Figure 5A); each record in the file contains the username, hashed 

password, user's individual and group numbers, user's name, home directory, and shell program; 

these fields are separated by colons (:). Note that each password is stored as a 13-byte string. 

The first two characters are actually a salt, randomness added to each password so that if two 

users have the same password, they will still be encrypted differently; the salt, in fact, provides a 

means so that a single password might have 4096 different encryptions. The remaining 11 bytes 

are the password hash, calculated using DES. 

As it happens, the /etc/passwd file is world-readable on Unix systems. This fact, coupled with 

the weak encryption of the passwords, resulted in the development of the shadow 

password system where passwords are kept in a separate, non-world-readable file used in 

http://www.rfc-editor.org/rfc/rfc4210.txt
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conjunction with the normal password file. When shadow passwords are used, the password 

entry in /etc/passwd is replaced with a "*" or "x" (Figure 5B.1) and the MD5 hash of the 

passwords are stored in /etc/shadow along with some other account information (Figure 5B.2). 

Windows NT uses a similar scheme to store passwords in the Security Access Manager (SAM) 

file. In the NT case, all passwords are hashed using the MD4 algorithm, resulting in a 128-bit 

(16-byte) hash value (they are then obscured using an undocumented mathematical 

transformation that was a secret until distributed on the Internet). The password password, for 

example, might be stored as the hash value (in 

hexadecimal) 60771b22d73c34bd4a290a79c8b09f18. 

Passwords are not saved in plaintext on computer systems precisely so they cannot be easily 

compromised. For similar reasons, we don't want passwords sent in plaintext across a network. 

But for remote logon applications, how does a client system identify itself or a user to the 

server? One mechanism, of course, is to send the password as a hash value and that, indeed, may 

be done. A weakness of that approach, however, is that an intruder can grab the password off of 

the network and use an off-line attack (such as a dictionary attack where an attacker takes every 

known word and encrypts it with the network's encryption algorithm, hoping eventually to find a 

match with a purloined password hash). In some situations, an attacker only has to copy the 

hashed password value and use it later on to gain unauthorized entry without ever learning the 

actual password. 

An even stronger authentication method uses the password to modify a shared secret between 

the client and server, but never allows the password in any form to go across the network. This 

is the basis for the Challenge Handshake Authentication Protocol (CHAP), the remote logon 

process used by Windows NT. 

As suggested above, Windows NT passwords are stored in a security file on a server as a 16-

byte hash value. In truth, Windows NT stores two hashes; a weak hash based upon the old LAN 

Manager (LanMan) scheme and the newer NT hash. When a user logs on to a server from a 

remote workstation, the user is identified by the username, sent across the network in plaintext 

(no worries here; it's not a secret anyway!). The server then generates a 64-bit random number 

and sends it to the client (also in plaintext). This number is the challenge. 

Using the LanMan scheme, the client system then encrypts the challenge using DES. Recall that 

DES employs a 56-bit key, acts on a 64-bit block of data, and produces a 64-bit output. In this 

case, the 64-bit data block is the random number. The client actually uses three different DES 

keys to encrypt the random number, producing three different 64-bit outputs. The first key is the 

first seven bytes (56 bits) of the password's hash value, the second key is the next seven bytes in 

the password's hash, and the third key is the remaining two bytes of the password's hash 

concatenated with five zero-filled bytes. (So, for the example above, the three DES keys would 

be 60771b22d73c34, bd4a290a79c8b0, and 9f180000000000.) Each key is applied to 

the random number resulting in three 64-bit outputs, which comprise the response. Thus, the 

server's 8-byte challenge yields a 24-byte response from the client and this is all that would be 

seen on the network. The server, for its part, does the same calculation to ensure that the values 

match. 

There is, however, a significant weakness to this system. Specifically, the response is generated 

in such a way as to effectively reduce 16-byte hash to three smaller hashes, of length seven, 



seven, and two. Thus, a password cracker has to break at most a 7-byte hash. One Windows NT 

vulnerability test program that I have used in the past will report passwords that are "too short," 

defined as "less than 8 characters." When I asked how the program knew that passwords were 

too short, the software's salespeople suggested to me that the program broke the passwords to 

determine their length. This is undoubtedly not true; all the software really has to do is look at 

the second 7-byte block and some known value indicates that it is empty, which would indicate 

a password of seven or less characters. 

Consider the following example, showing the LanMan hash of two different short passwords 

(take a close look at the last 8 bytes): 

AA: 89D42A44E77140AAAAD3B435B51404EE 

AAA: 1C3A2B6D939A1021AAD3B435B51404EE 

Note that the NT hash provides no such clue: 

AA: C5663434F963BE79C8FD99F535E7AAD8 

AAA: 6B6E0FB2ED246885B98586C73B5BFB77 

It is worth noting that the discussion above describes the Microsoft version of CHAP, or MS-

CHAP (MS-CHAPv2 is described in RFC 2759). MS-CHAP assumes that it is working with 

hashed values of the password as the key to encrypting the challenge. More traditional CHAP 

(RFC 1994) assumes that it is starting with passwords in plaintext. The relevance of this 

observation is that a CHAP client, for example, cannot be authenticated by an MS-CHAP 

server; both client and server must use the same CHAP version. 

5.2. Some of the Finer Details of Diffie-Hellman 

Diffie and Hellman introduced the concept of public-key cryptography. The mathematical 

"trick" of Diffie-Hellman key exchange is that it is relatively easy to compute exponents 

compared to computing discrete logarithms. Diffie-Hellman allows two parties — the 

ubiquitous Alice and Bob — to generate a secret key; they need to exchange some information 

over an unsecure communications channel to perform the calculation but an eavesdropper 

cannot determine the shared secret key based upon this information. 

Diffie-Hellman works like this. Alice and Bob start by agreeing on a large prime number, N. 

They also have to choose some number G so that G<N. 

There is actually another constraint on G, namely that it must be primitive with respect to 

N. Primitive is a definition that is a little beyond the scope of our discussion but basically G is 

primitive to N if the set of N-1 values of Gi mod N for i = (1,N-1) are all different. As an 

example, 2 is not primitive to 7 because the set of powers of 2 from 1 to 6, mod 7 (i.e., 21 mod 7, 

22 mod 7, ..., 26 mod 7) = {2,4,1,2,4,1}. On the other hand, 3 is primitive to 7 because the set of 

powers of 3 from 1 to 6, mod 7 = {3,2,6,4,5,1}. 

(The definition of primitive introduced a new term to some readers, namely mod. The phrase x 

mod y (and read as written!) means "take the remainder after dividing x by y." Thus, 1 mod 7 = 

1, 9 mod 6 = 3, and 8 mod 8 = 0. Read more about the modulo function in the appendix.) 

http://www.rfc-editor.org/rfc/rfc2759.txt
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Anyway, either Alice or Bob selects N and G; they then tell the other party what the values are. 

Alice and Bob then work independently: 

Alice... 

 
 

1. Choose a large random number, XA < N. 

This is Alice's private key. 

2. Compute YA = GX
A mod N. This is Alice's 

public key. 

3. Exchange public key with Bob. 

4. Compute KA = YB
X

A mod N 

Bob... 

 
 

1. Choose a large random number, XB < N. 

This is Bob's private key. 

2. Compute YB = GX
B mod N. This is Bob's 

public key. 

3. Exchange public key with Alice. 

4. Compute KB = YA
X

B mod N 

Note that XA and XB are kept secret while YA and YB are openly shared; these are the private 

and public keys, respectively. Based on their own private key and the public key learned from 

the other party, Alice and Bob have computed their secret keys, KA and KB, respectively, which 

are equal to GX
A

X
B mod N. 

Perhaps a small example will help here. Although Alice and Bob will really choose large values 

for N and G, I will use small values for example only; let's use N=7 and G=3. 

Alice... 

 
 

1. Choose XA = 2 

2. Calculate YA = 32 mod 7 = 2 

3. Exchange public keys with Bob 

4. KA = 62 mod 7 = 1 

Bob... 

 
 

1. Choose XB = 3 

2. Calculate YB = 33 mod 7 = 6 

3. Exchange public keys with Alice 

4. KB = 23 mod 7 = 1 

In this example, then, Alice and Bob will both find the secret key 1 which is, indeed, 36 mod 7 

(i.e., GX
A

X
B = 32x3). If an eavesdropper (Mallory) was listening in on the information exchange 

between Alice and Bob, he would learn G, N, YA, and YB which is a lot of information but 

insufficient to compromise the key; as long as XA and XB remain unknown, K is safe. As said 

above, calculating Y = GX is a lot easier than finding X = logG Y. 

A short digression on modulo arithmetic. In the paragraph above, we noted that 36 mod 7 = 1. 

This can be confirmed, of course, by noting that: 

36 = 729 = 104*7 + 1 



There is a nice property of modulo arithmetic, however, that makes this determination a little 

easier, namely: (a mod x)(b mod x) = (ab mod x). Therefore, one possible shortcut is to note that 

36 = (33)(33). Therefore, 36 mod 7 = (33 mod 7)(33 mod 7) = (27 mod 7)(27 mod 7) = 6*6 mod 7 

= 36 mod 7 = 1. 

Diffie-Hellman can also be used to allow key sharing amongst multiple users. Note again that 

the Diffie-Hellman algorithm is used to generate secret keys, not to encrypt and decrypt 

messages. 

5.3. Some of the Finer Details of RSA Public-Key Cryptography 

Unlike Diffie-Hellman, RSA can be used for key exchange as well as digital signatures and the 

encryption of small blocks of data. Today, RSA is primarily used to encrypt the session key 

used for secret key encryption (message integrity) or the message's hash value (digital 

signature). RSA's mathematical hardness comes from the ease in calculating large numbers and 

the difficulty in finding the prime factors of those large numbers. Although employed with 

numbers using hundreds of digits, the math behind RSA is relatively straight-forward. 

To create an RSA public/private key pair, here are the basic steps: 

1. Choose two prime numbers, p and q. From these numbers you can calculate the 

modulus, n = pq. 

2. Select a third number, e, that is relatively prime to (i.e., it does not divide evenly 

into) the product (p-1)(q-1). The number e is the public exponent. 

3. Calculate an integer d from the quotient (ed-1)/[(p-1)(q-1)]. The number d is the 

private exponent. 

The public key is the number pair (n,e). Although these values are publicly known, it is 

computationally infeasible to determine d from n and e if p and q are large enough. 

To encrypt a message, M, with the public key, create the ciphertext, C, using the equation: 

C = Me mod n 

The receiver then decrypts the ciphertext with the private key using the equation: 

M = Cd mod n 

Now, this might look a bit complex and, indeed, the mathematics does take a lot of computer 

power given the large size of the numbers; since p and q may be 100 digits (decimal) or more, d 

and e will be about the same size and n may be over 200 digits. Nevertheless, a simple example 

may help. In this example, the values for p, q, e, and d are purposely chosen to be very small and 

the reader will see exactly how badly these values perform, but hopefully the algorithm will be 

adequately demonstrated: 

1. Select p=3 and q=5. 

2. The modulus n = pq = 15. 

3. The value e must be relatively prime to (p-1)(q-1) = (2)(4) = 8. Select e=11 



4. The value d must be chosen so that (ed-1)/[(p-1)(q-1)] is an integer. Thus, the 

value (11d-1)/[(2)(4)] = (11d-1)/8 must be an integer. Calculate one possible value, 

d=3. 

5. Let's say we wish to send the string SECRET. For this example, we will convert 

the string to the decimal representation of the ASCII values of the characters, 

which would be 83 69 67 82 69 84. 

6. The sender encrypts each digit one at a time (we have to because the modulus is so 

small) using the public key value (e,n)=(11,15). Thus, each ciphertext character 

Ci = Mi
11 mod 15. The input digit string 0x836967826984 will be transmitted 

as 0x2c696d286924. 

7. The receiver decrypts each digit using the private key value (d,n)=(3,15). Thus, 

each plaintext character Mi = Ci
3 mod 15. The input digit 

string 0x2c696d286924 will be converted to0x836967826984 and, presumably, 

reassembled as the plaintext string SECRET. 

Again, the example above uses small values for simplicity and, in fact, shows the weakness of 

small values; note that 4, 6, and 9 do not change when encrypted, and that the values 2 and 8 

encrypt to 8 and 2, respectively. Nevertheless, this simple example demonstrates how RSA can 

be used to exchange information. 

RSA keylengths of 512 and 768 bits are considered to be pretty weak. The minimum suggested 

RSA key is 1024 bits; 2048 and 3072 bits are even better. 

As an aside, Adam Back (http://www.cypherspace.org/~adam/) wrote a two-line Perl script to 

implement RSA. It employs dc, an arbitrary precision arithmetic package that ships with most 

UNIX systems: 

print pack"C*",split/\D+/,`echo "16iII*o\U@{$/=$z;[(pop,pop,unpack"H*",<> 

)]}\EsMsKsN0[lN*1lK[d2%Sa2/d0<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<J]dsJxp"|dc` 

5.4. Some of the Finer Details of DES, Breaking DES, and DES Variants 

The Data Encryption Standard (DES) started life in the mid-1970s, adopted by the National 

Bureau of Standards (NBS) [now the National Institute for Standards and Technology (NIST)] 

as Federal Information Processing Standard 46 (FIPS 46-3) and by the American National 

Standards Institute (ANSI) as X3.92. 

As mentioned earlier, DES uses the Data Encryption Algorithm (DEA), a secret key block-

cipher employing a 56-bit key operating on 64-bit blocks. FIPS 81 describes four modes of DES 

operation: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), 

and Output Feedback (OFB). Despite all of these options, ECB is the most commonly deployed 

mode of operation. 

NIST finally declared DES obsolete in 2004, and withdrew FIPS 46-3, 74, and 81 (Federal 

Register, July 26, 2004, 69(142), 44509-44510). Although other block ciphers have replaced 

DES, it is still interesting to see how DES encryption is performed; not only is it sort of neat, but 

DES was the first crypto scheme commonly seen in non-govermental applications and was the 

catalyst for modern "public" cryptography and the first public Feistel cipher. DES still remains 

in many products — and cryptography students and cryptographers will continue to study DES 

for years to come. 

http://www.cypherspace.org/~adam/
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DES Operational Overview 

DES uses a 56-bit key. In fact, the 56-bit key is divided into eight 7-bit blocks and an 8th odd 

parity bit is added to each block (i.e., a "0" or "1" is added to the block so that there are an odd 

number of 1 bits in each 8-bit block). By using the 8 parity bits for rudimentary error detection, 

a DES key is actually 64 bits in length for computational purposes although it only has 56 bits 

worth of randomness, orentropy (See Section A.3 for a brief discussion of entropy and 

information theory). 

 

  

FIGURE 6: DES enciphering algorithm. 

 

DES then acts on 64-bit blocks of the plaintext, invoking 16 rounds of permutations, swaps, and 

substitutes, as shown in Figure 6. The standard includes tables describing all of the selection, 

permutation, and expansion operations mentioned below; these aspects of the algorithm are not 

secrets. The basic DES steps are: 

http://www.garykessler.net/library/crypto.html#entropy


1. The 64-bit block to be encrypted undergoes an initial permutation (IP), where each 

bit is moved to a new bit position; e.g., the 1st, 2nd, and 3rd bits are moved to the 

58th, 50th, and 42nd position, respectively. 

2. The 64-bit permuted input is divided into two 32-bit blocks, called left and right, 
respectively. The initial values of the left and right blocks are denoted L0 and R0. 

3. There are then 16 rounds of operation on the L and R blocks. During each iteration 
(where n ranges from 1 to 16), the following formulae apply:  

Ln = Rn-1 

Rn = Ln-1 XOR f(Rn-1,Kn) 

At any given step in the process, then, the new L block value is merely taken from 

the prior R block value. The new R block is calculated by taking the bit-by-bit 

exclusive-OR (XOR) of the prior L block with the results of applying the DES 

cipher function, f, to the prior R block and Kn. (Kn is a 48-bit value derived from 

the 64-bit DES key. Each round uses a different 48 bits according to the standard's 

Key Schedule algorithm.) 

The cipher function, f, combines the 32-bit R block value and the 48-bit subkey in 

the following way. First, the 32 bits in the R block are expanded to 48 bits by an 

expansion function (E); the extra 16 bits are found by repeating the bits in 16 

predefined positions. The 48-bit expanded R-block is then ORed with the 48-bit 

subkey. The result is a 48-bit value that is then divided into eight 6-bit blocks. 

These are fed as input into 8 selection (S) boxes, denoted S1,...,S8. Each 6-bit input 

yields a 4-bit output using a table lookup based on the 64 possible inputs; this 

results in a 32-bit output from the S-box. The 32 bits are then rearranged by a 

permutation function (P), producing the results from the cipher function. 

4. The results from the final DES round — i.e., L16 and R16 — are recombined into a 

64-bit value and fed into an inverse initial permutation (IP-1). At this step, the bits 

are rearranged into their original positions, so that the 58th, 50th, and 42nd bits, for 

example, are moved back into the 1st, 2nd, and 3rd positions, respectively. The 

output from IP-1 is the 64-bit ciphertext block. 

Consider this example with the given 56-bit key and input: 

Key: 1100101 0100100 1001001 0011101 0110101 0101011 
1101100 0011010 

 

Input character string:  GoAggies 

Input bit string:  11100010 11110110 10000010 11100110 
11100110 10010110 10100110 11001110 

 

Output bit string: 10011111 11110010 10000000 10000001 
01011011 00101001 00000011 00101111 

Output character string: ùOÚ”Àô 

Breaking DES 



The mainstream cryptographic community has long held that DES's 56-bit key was too short to 

withstand a brute-force attack from modern computers. Remember Moore's Law: computer 

power doubles every 18 months. Given that increase in power, a key that could withstand a 

brute-force guessing attack in 1975 could hardly be expected to withstand the same attack a 

quarter century later. 

DES is even more vulnerable to a brute-force attack because it is often used to encrypt words, 

meaning that the entropy of the 64-bit block is, effectively, greatly reduced. That is, if we are 

encrypting random bit streams, then a given byte might contain any one of 28 (256) possible 

values and the entire 64-bit block has 264, or about 18.5 quintillion, possible values. If we are 

encrypting words, however, we are most likely to find a limited set of bit patterns; perhaps 70 or 

so if we account for upper and lower case letters, the numbers, space, and some punctuation. 

This means that only about ¼of the bit combinations of a given byte are likely to occur. 

Despite this criticism, the U.S. government insisted throughout the mid-1990s that 56-bit DES 

was secure and virtually unbreakable if appropriate precautions were taken. In response, RSA 

Laboratories sponsored a series of cryptographic challenges to prove that DES was no longer 

appropriate for use. 

DES Challenge I was launched in March 1997. It was completed in 84 days by R. Verser in a 

collaborative effort using thousands of computers on the Internet. 

The first DES II challenge lasted 40 days in early 1998. This problem was solved 

by distributed.net, a worldwide distributed computing network using the spare CPU cycles of 

computers around the Internet (participants in distributed.net's activities load a client program 

that runs in the background, conceptually similar to the SETI @Home "Search for 

Extraterrestrial Intelligence" project). The distributed.net systems were checking 28 billion keys 

per second by the end of the project. 

The second DES II challenge lasted less than 3 days. On July 17, 1998, the Electronic Frontier 

Foundation (EFF) announced the construction of hardware that could brute-force a DES key in 

an average of 4.5 days. Called Deep Crack, the device could check 90 billion keys per second 

and cost only about $220,000 including design (it was erroneously and widely reported that 

subsequent devices could be built for as little as $50,000). Since the design is scalable, this 

suggests that an organization could build a DES cracker that could break 56-bit keys in an 

average of a day for as little as $1,000,000. Information about the hardware design and all 

software can be obtained from the EFF. 

The DES III challenge, launched in January 1999, was broken is less than a day by the 

combined efforts of Deep Crack and distributed.net. This is widely considered to have been the 

final nail in DES's coffin. 

The Deep Crack algorithm is actually quite interesting. The general approach that the DES 

Cracker Project took was not to break the algorithm mathematically but instead to launch a 

brute-force attack by guessing every possible key. A 56-bit key yields 256, or about 72 

quadrillion, possible values. So the DES cracker team looked for any shortcuts they could find! 

First, they assumed that somerecognizable plaintext would appear in the decrypted string even 

though they didn't have a specific known plaintext block. They then applied all 256 possible key 

values to the 64-bit block (I don't mean to make this sound simple!). The system checked to see 

if the decrypted value of the block was "interesting," which they defined as bytes containing one 

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-laboratories-secret-key-challenge.htm
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of the alphanumeric characters, space, or some punctuation. Since the likelihood of a single byte 

being "interesting" is about ¼, then the likelihood of the entire 8-byte stream being "interesting" 

is about ¼8, or 1/65536 (½16). This dropped the number of possible keys that might yield 

positive results to about 240, or about a trillion. 

They then made the assumption that an "interesting" 8-byte block would be followed by another 

"interesting" block. So, if the first block of ciphertext decrypted to something interesting, they 

decrypted the next block; otherwise, they abandoned this key. Only if the second block was also 

"interesting" did they examine the key closer. Looking for 16 consecutive bytes that were 

"interesting" meant that only 224, or 16 million, keys needed to be examined further. This further 

examination was primarily to see if the text made any sense. Note that possible "interesting" 

blocks might be 1hJ5&aB7 orDEPOSITS; the latter is more likely to produce a better result. 

And even a slow laptop today can search through lists of only a few million items in a relatively 

short period of time. (Interested readers are urged to read Cracking DES and EFF's Cracking 

DES page.) 

It is well beyond the scope of this paper to discuss other forms of breaking DES and other codes. 

Nevertheless, it is worth mentioning a couple of forms of cryptanalysis that have been shown to 

be effective against DES. Differential cryptanalysis, invented in 1990 by E. Biham and A. 

Shamir (of RSA fame), is a chosen-plaintext attack. By selecting pairs of plaintext with 

particular differences, the cryptanalyst examines the differences in the resultant ciphertext 

pairs. Linear plaintext, invented by M. Matsui, uses a linear approximation to analyze the 

actions of a block cipher (including DES). Both of these attacks can be more efficient than brute 

force. 

DES Variants 

Once DES was "officially" broken, several variants appeared. But none of them came overnight; 

work at hardening DES had already been underway. In the early 1990s, there was a proposal to 

increase the security of DES by effectively increasing the key length by using multiple keys 

with multiple passes. But for this scheme to work, it had to first be shown that the DES function 

is not a group, as defined in mathematics. If DES was a group, then we could show that for two 

DES keys, X1 and X2, applied to some plaintext (P), we can find a single equivalent key, X3, 

that would provide the same result; i.e., 

EX2(EX1(P)) = EX3(P) 

where EX(P) represents DES encryption of some plaintext P using DES key X. If DES were a 

group, it wouldn't matter how many keys and passes we applied to some plaintext; we could 

always find a single 56-bit key that would provide the same result. 

As it happens, DES was proven to not be a group so that as we apply additional keys and passes, 

the effective key length increases. One obvious choice, then, might be to use two keys and two 

passes, yielding an effective key length of 112 bits. Let's call this Double-DES. The two keys, 

Y1 and Y2, might be applied as follows: 

C = EY2(EY1(P)) 

P = DY1(DY2(C)) 

http://www.amazon.com/Cracking-DES-Encryption-Research-Politics/dp/1565925203
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
https://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html
https://en.wikipedia.org/wiki/Group_%28mathematics%29


where EY(P) and DY(C) represent DES encryption and decryption, respectively, of some 

plaintext P and ciphertext C, respectively, using DES key Y. 

So far, so good. But there's an interesting attack that can be launched against this "Double-DES" 

scheme. First, notice that the applications of the formula above can be thought of with the 

following individual steps (where C' and P' are intermediate results): 

C' = EY1(P) and C = EY2(C') 

P' = DY2(C) and P = DY1(P') 

Unfortunately, C'=P'. That leaves us vulnerable to a simple known plaintext attack (sometimes 

called "Meet-in-the-middle") where the attacker knows some plaintext (P) and its matching 

ciphertext (C). To obtain C', the attacker needs to try all 256 possible values of Y1 applied to P; 

to obtain P', the attacker needs to try all 256 possible values of Y2 applied to C. Since C'=P', the 

attacker knows when a match has been achieved — after only 256 + 256 = 257 key searches, only 

twice the work of brute-forcing DES. So "Double-DES" is not a good solution. 

Triple-DES (3DES), based upon the Triple Data Encryption Algorithm (TDEA), is described 

in FIPS 46-3. 3DES, which is not susceptible to a meet-in-the-middle attack, employs three DES 

passes and one, two, or three keys called K1, K2, and K3. Generation of the ciphertext (C) from 

a block of plaintext (P) is accomplished by: 

C = EK3(DK2(EK1(P))) 

where EK(P) and DK(P) represent DES encryption and decryption, respectively, of some 

plaintext P using DES key K. (For obvious reasons, this is sometimes referred to as an encrypt-

decrypt-encrypt mode operation.) 

Decryption of the ciphertext into plaintext is accomplished by: 

P = DK1(EK2(DK3(C))) 

The use of three, independent 56-bit keys provides 3DES with an effective key length of 168 

bits. The specification also defines use of two keys where, in the operations above, K3 = K1; 

this provides an effective key length of 112 bits. Finally, a third keying option is to use a single 

key, so that K3 = K2 = K1 (in this case, the effective key length is 56 bits and 3DES applied to 

some plaintext, P, will yield the same ciphertext, C, as normal DES would with that same key). 

Given the relatively low cost of key storage and the modest increase in processing due to the use 

of longer keys, the best recommended practices are that 3DES be employed with three keys. 

Another variant of DES, called DESX, is due to Ron Rivest. Developed in 1996, DESX is a very 

simple algorithm that greatly increases DES's resistance to brute-force attacks without 

increasing its computational complexity. In DESX, the plaintext input is XORed with 64 

additional key bits prior to encryption and the output is likewise XORed with the 64 key bits. By 

adding just two XOR operations, DESX has an effective keylength of 120 bits against an 

exhaustive key-search attack. As it happens, DESX is no more immune to other types of more 

sophisticated attacks, such as differential or linear cryptanalysis, but brute-force is the primary 

attack vector on DES. 

Closing Comments 

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf


Although DES has been deprecated and replaced by the Advanced Encryption Standard (AES) 

because of its vulnerability to a modestly-priced brute-force attack, many applications continue 

to rely on DES for security, and many software designers and implementers continue to include 

DES in new applications. In some cases, use of DES is wholly appropriate but, in general, DES 

should not continue to be promulgated in production software and hardware. RFC 

4772 discusses the security implications of employing DES. 

On a final note, readers may be interested in seeing an Excel implementation of DES or J.O. 

Grabbe's The DES Algorithm Illustrated. 

5.5. Pretty Good Privacy (PGP) 

Pretty Good Privacy (PGP) is one of today's most widely used public key cryptography 

programs. Developed by Philip Zimmermann in the early 1990s and long the subject of 

controversy, PGP is available as a plug-in for many e-mail clients, such as Claris Emailer, 

Microsoft Outlook/Outlook Express, and Qualcomm Eudora. 

PGP can be used to sign or encrypt e-mail messages with the mere click of the mouse. 

Depending upon the version of PGP, the software uses SHA or MD5 for calculating the message 

hash; CAST, Triple-DES, or IDEA for encryption; and RSA or DSS/Diffie-Hellman for key 

exchange and digital signatures. 

When PGP is first installed, the user has to create a key-pair. One key, the public key, can be 

advertised and widely circulated. The private key is protected by use of a passphrase. The 

passphrase has to be entered every time the user accesses their private key. 

 

 

 -----BEGIN PGP SIGNED MESSAGE----- 

 Hash: SHA1 

 

 Hi Carol. 

 

 What was that pithy Groucho Marx quote? 

 

 /kess 

 

 -----BEGIN PGP SIGNATURE----- 

 Version: PGP for Personal Privacy 5.0 

 Charset: noconv 

 

 iQA/AwUBNFUdO5WOcz5SFtuEEQJx/ACaAgR97+vvDU6XWELV/GANjAAgBtUAnjG3 

 Sdfw2JgmZIOLNjFe7jP0Y8/M 

 =jUAU 

 -----END PGP SIGNATURE----- 

FIGURE 7: A PGP signed message. The sender uses their private key; at the 

destination, the sender's e-mail address yields the public key from the receiver's 

keyring. 

 

Figure 7 shows a PGP signed message. This message will not be kept secret from an 

eavesdropper, but a recipient can be assured that the message has not been altered from what the 

sender transmitted. In this instance, the sender signs the message using their own private key. 

http://www.rfc-editor.org/rfc/rfc4772.txt
http://www.rfc-editor.org/rfc/rfc4772.txt
http://www.nayuki.io/page/des-cipher-internals-in-excel
http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm
http://www.philzimmermann.com/


The receiver uses the sender's public key to verify the signature; the public key is taken from the 

receiver's keyring based on the sender's e-mail address. Note that the signature process does not 

work unless the sender's public key is on the receiver's keyring. 

 

 

-----BEGIN PGP MESSAGE----- 

Version: PGP for Personal Privacy 5.0 

MessageID: DAdVB3wzpBr3YRunZwYvhK5gBKBXOb/m 

 

qANQR1DBwU4D/TlT68XXuiUQCADfj2o4b4aFYBcWumA7hR1Wvz9rbv2BR6WbEUsy 

ZBIEFtjyqCd96qF38sp9IQiJIKlNaZfx2GLRWikPZwchUXxB+AA5+lqsG/ELBvRa 

c9XefaYpbbAZ6z6LkOQ+eE0XASe7aEEPfdxvZZT37dVyiyxuBBRYNLN8Bphdr2zv 

z/9Ak4/OLnLiJRk05/2UNE5Z0a+3lcvITMmfGajvRhkXqocavPOKiin3hv7+Vx88 

uLLem2/fQHZhGcQvkqZVqXx8SmNw5gzuvwjV1WHj9muDGBY0MkjiZIRI7azWnoU9 

3KCnmpR60VO4rDRAS5uGl9fioSvze+q8XqxubaNsgdKkoD+tB/4u4c4tznLfw1L2 

YBS+dzFDw5desMFSo7JkecAS4NB9jAu9K+f7PTAsesCBNETDd49BTOFFTWWavAfE 

gLYcPrcn4s3EriUgvL3OzPR4P1chNu6sa3ZJkTBbriDoA3VpnqG3hxqfNyOlqAka 

 

mJJuQ53Ob9ThaFH8YcE/VqUFdw+bQtrAJ6NpjIxi/x0FfOInhC/bBw7pDLXBFNaX 

HdlLQRPQdrmnWskKznOSarxq4GjpRTQo4hpCRJJ5aU7tZO9HPTZXFG6iRIT0wa47 

 

 

AR5nvkEKoIAjW5HaDKiJriuWLdtN4OXecWvxFsjR32ebz76U8aLpAK87GZEyTzBx 

dV+lH0hwyT/y1cZQ/E5USePP4oKWF4uqquPee1OPeFMBo4CvuGyhZXD/18Ft/53Y 

WIebvdiCqsOoabK3jEfdGExce63zDI0= 

=MpRf 

-----END PGP MESSAGE----- 

FIGURE 8: A PGP encrypted message. The receiver's e-mail address is the pointer to 

the public key in the sender's keyring. At the destination side, the receiver uses their 

own private key. 

 

Figure 8 shows a PGP encrypted message (PGP compresses the file, where practical, prior to 

encryption because encrypted files have a high degree of randomness and, therefore, cannot be 

efficiently compressed). In this example, public key methods are used to exchange the session 

key for the actual message encryption that employs secret-key cryptography. In this case, the 

receiver's e-mail address is the pointer to the public key in the sender's keyring; in fact, the same 

message can be sent to multiple recipients and the message will not be significantly longer since 

all that needs to be added is the session key encrypted by each receiver's public key. When the 

message is received, the recipient will use their private key to extract the session secret key to 

successfully decrypt the message (Figure 9). 

 

 

 Hi Gary, 

 

 "Outside of a dog, a book is man's best friend. 

 Inside of a dog, it's too dark to read." 

 

 Carol 

FIGURE 9: The decrypted message. 

 



It is worth noting that PGP was one of the first so-called "hybrid cryptosystems" that combined 

aspects of SKC and PKC. When Zimmermann was first designing PGP in the late-1980s, he 

wanted to use RSA to encrypt the entire message. The PCs of the days, however, suffered 

significant performance degradation when executing RSA so he hit upon the idea of using SKC 

to encrypt the message and PKC to encrypt the SKC key. 

PGP went into a state of flux in 2002. Zimmermann sold PGP to Network Associates, Inc. 

(NAI) in 1997 and himself resigned from NAI in early 2001. In March 2002, NAI announced 

that they were dropping support for the commercial version of PGP having failed to find a buyer 

for the product willing to pay what NAI wanted. In August 2002, PGP was purchased from NAI 

by PGP Corp. which, in turn, was purchased by Symantec. Meanwhile, there are many freeware 

versions of PGP available through the International PGP Page and the OpenPGP Alliance. Also 

check out the GNU Privacy Guard (GnuPG), a GNU project implementation of OpenPGP 

(defined in RFC 2440). 

5.6. IP Security (IPsec) Protocol 

NOTE: The information in this section assumes that the reader is familiar with the Internet 

Protocol (IP), at least to the extent of the packet format and header contents. More information 

about IP can be found in An Overview of TCP/IP Protocols and the Internet. More information 

about IPv6 can be found in IPv6: The Next Generation Internet Protocol. 

The Internet and the TCP/IP protocol suite were not built with security in mind. This statement 

is not meant as a criticism; the baseline UDP, TCP, IP, and ICMP protocols were written in 

1980 and built for the relatively closed ARPANET community. TCP/IP wasn't designed for the 

commercial-grade financial transactions that they now see nor for virtual private networks 

(VPNs) on the Internet. To bring TCP/IP up to today's security necessities, the Internet 

Engineering Task Force (IETF) formed the IP Security Protocol Working Group which, in turn, 

developed the IP Security (IPsec) protocol. IPsec is not a single protocol, in fact, but a suite of 

protocols providing a mechanism to provide data integrity, authentication, privacy, and 

nonrepudiation for the classic Internet Protocol (IP). Although intended primarily for IP version 

6 (IPv6), IPsec can also be employed by the current version of IP, namely IP version 4 (IPv4). 

As shown in Table 3, IPsec is described in nearly a dozen RFCs. RFC 4301, in particular, 

describes the overall IP security architecture and RFC 2411 provides an overview of the IPsec 

protocol suite and the documents describing it. 

IPsec can provide either message authentication and/or encryption. The latter requires more 

processing than the former, but will probably end up being the preferred usage for applications 

such as VPNs and secure electronic commerce. 

Central to IPsec is the concept of a security association (SA). Authentication and confidentiality 

using AH or ESP use SAs and a primary role of IPsec key exchange it to establish and maintain 

SAs. An SA is a simplex (one-way or unidirectional) logical connection between two 

communicating IP endpoints that provides security services to the traffic carried by it using 

either AH or ESP procedures. The endpoint of an SA can be an IP host or IP security gateway 

(e.g., a proxy server, VPN server, etc.). Providing security to the more typical scenario of two-

way (bi-directional) communication between two endpoints requires the establishment of two 

SAs (one in each direction). 

http://www.symantec.com/products-solutions/families/?fid=encryption
http://www.pgpi.org/
http://openpgp.org/
http://www.gnupg.org/
http://www.rfc-editor.org/rfc/rfc2440.txt
http://www.garykessler.net/library/tcpip.html
http://www.garykessler.net/library/ipv6_exp.html
https://datatracker.ietf.org/wg/ipsec/charter/
http://www.garykessler.net/library/crypto.html#tab03-ipsec
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc2411.txt


An SA is uniquely identified by a 3-tuple composed of: 

 Security Parameter Index (SPI), a 32-bit identifier of the connection 

 IP Destination Address 

 security protocol (AH or ESP) identifier 

The IP Authentication Header (AH), described in RFC 4302, provides a mechanism for data 

integrity and data origin authentication for IP packets using HMAC with MD5 (RFC 2403), 

HMAC with SHA-1 (RFC 2404), or HMAC with RIPEMD (RFC 2857). See also RFC 4305. 

 

 

    0                   1                   2                   3 

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   | Next Header   |  Payload Len  |          RESERVED             | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |                 Security Parameters Index (SPI)               | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |                    Sequence Number Field                      | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |                                                               | 

   +                Integrity Check Value-ICV (variable)           | 

   |                                                               | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

FIGURE 10: IPsec Authentication Header format. (From RFC 4302) 

 

Figure 10 shows the format of the IPsec AH. The AH is merely an additional header in a packet, 

more or less representing another protocol layer above IP (this is shown in Figure 12 below). 

Use of the IP AH is indicated by placing the value 51 (0x33) in the IPv4 Protocol or IPv6 Next 

Header field in the IP packet header. The AH follows mandatory IPv4/IPv6 header fields and 

precedes higher layer protocol (e.g., TCP, UDP) information. The contents of the AH are: 

 Next Header: An 8-bit field that identifies the type of the next payload after the 

Authentication Header. 

 Payload Length: An 8-bit field that indicates the length of AH in 32-bit words (4-

byte blocks), minus "2". [The rationale for this is somewhat counter intuitive but 

technically important. All IPv6 extension headers encode the header extension 

length (Hdr Ext Len) field by first subtracting 1 from the header length, which is 

measured in 64-bit words. Since AH was originally developed for IPv6, it is an 

IPv6 extension header. Since its length is measured in 32-bit words, however, the 

Payload Length is calculated by subtracting 2 (32 bit words) to maintain 

consistency with IPv6 coding rules.] In the default case, the three 32-bit word fixed 

portion of the AH is followed by a 96-bit authentication value, so the Payload 

Length field value would be 4. 

 Reserved: This 16-bit field is reserved for future use and always filled with zeros. 

 Security Parameters Index (SPI): An arbitrary 32-bit value that, in combination 

with the destination IP address and security protocol, uniquely identifies the 

Security Association for this datagram. The value 0 is reserved for local, 

http://www.rfc-editor.org/rfc/rfc4302.txt
http://www.rfc-editor.org/rfc/rfc2403.txt
http://www.rfc-editor.org/rfc/rfc2404.txt
http://www.rfc-editor.org/rfc/rfc2857.txt
http://www.rfc-editor.org/rfc/rfc4305.txt


implementation-specific uses and values between 1-255 are reserved by the 

Internet Assigned Numbers Authority (IANA) for future use. 

 Sequence Number: A 32-bit field containing a sequence number for each datagram; 

initially set to 0 at the establishment of an SA. AH uses sequence numbers as an 

anti-replay mechanism, to prevent a "person-in-the-middle" attack. If anti-replay is 

enabled (the default), the transmitted Sequence Number is never allowed to cycle 

back to 0; therefore, the sequence number must be reset to 0 by establishing a new 

SA prior to the transmission of the 232nd packet. 

 Authentication Data: A variable-length, 32-bit aligned field containing the 

Integrity Check Value (ICV) for this packet (default length = 96 bits). The ICV is 

computed using the authentication algorithm specified by the SA, such as DES, 

MD5, or SHA-1. Other algorithms may also be supported. 

The IP Encapsulating Security Payload (ESP), described in RFC 4303, provides message 

integrity and privacy mechanisms in addition to authentication. As in AH, ESP uses HMAC 

with MD5, SHA-1, or RIPEMD authentication (RFC 2403/RFC 2404/RFC 2857); privacy is 

provided using DES-CBC encryption (RFC 2405), NULL encryption (RFC 2410), other CBC-

mode algorithms (RFC 2451), or AES (RFC 3686). See also RFC 4305 and RFC 4308. 

 

 

    0                   1                   2                   3 

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---- 

   |               Security Parameters Index (SPI)                 | ^Int. 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov- 

   |                      Sequence Number                          | |ered 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----   

   |                    Payload Data* (variable)                   | |   ^ 

   ~                                                               ~ |   | 

   |                                                               | |Conf. 

   +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov- 

   |               |     Padding (0-255 bytes)                     | |ered* 

   +-+-+-+-+-+-+-+-+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |   | 

   |                               |  Pad Length   | Next Header   | v   v 

 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------ 

   |         Integrity Check Value-ICV   (variable)                | 

   ~                                                               ~ 

   |                                                               | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

       * If included in the Payload field, cryptographic synchronization 

         data, e.g., an Initialization Vector (IV), usually is not 

         encrypted per se, although it often is referred to as being 

         being part of the ciphertext. 

FIGURE 11: IPsec Encapsulating Security Payload format. (From RFC 4303) 

 

Figure 11 shows the format of the IPsec ESP information. Use of the IP ESP format is indicated 

by placing the value 50 (0x32) in the IPv4 Protocol or IPv6 Next Header field in the IP packet 

header. The ESP header (i.e., SPI and sequence number) follows mandatory IPv4/IPv6 header 

fields and precedes higher layer protocol (e.g., TCP, UDP) information. The contents of the ESP 

packet are: 

http://www.rfc-editor.org/rfc/rfc4303.txt
http://www.rfc-editor.org/rfc/rfc2403.txt
http://www.rfc-editor.org/rfc/rfc2404.txt
http://www.rfc-editor.org/rfc/rfc2857.txt
http://www.rfc-editor.org/rfc/rfc2405.txt
http://www.rfc-editor.org/rfc/rfc2410.txt
http://www.rfc-editor.org/rfc/rfc2451.txt
http://www.rfc-editor.org/rfc/rfc3686.txt
http://www.rfc-editor.org/rfc/rfc4305.txt
http://www.rfc-editor.org/rfc/rfc4308.txt


 Security Parameters Index: (see description for this field in the AH, above.) 

 Sequence Number: (see description for this field in the AH, above.) 

 Payload Data: A variable-length field containing data as described by the Next 

Header field. The contents of this field could be encrypted higher layer data or an 

encrypted IP packet. 

 Padding: Between 0 and 255 octets of padding may be added to the ESP packet. 

There are several applications that might use the padding field. First, the 

encryption algorithm that is used may require that the plaintext be a multiple of 

some number of bytes, such as the block size of a block cipher; in this case, the 

Padding field is used to fill the plaintext to the size required by the algorithm. 

Second, padding may be required to ensure that the ESP packet and resulting 

ciphertext terminate on a 4-byte boundary. Third, padding may be used to conceal 

the actual length of the payload. Unless another value is specified by the 

encryption algorithm, the Padding octets take on the value 1, 2, 3, ... starting with 

the first Padding octet. This scheme is used because, in addition to being simple to 

implement, it provides some protection against certain forms of "cut and paste" 

attacks. 

 Pad Length: An 8-bit field indicating the number of bytes in the Padding field; 

contains a value between 0-255. 

 Next Header: An 8-bit field that identifies the type of data in the Payload Data 

field, such as an IPv6 extension header or a higher layer protocol identifier. 

 Authentication Data: (see description for this field in the AH, above.) 

Two types of SAs are defined in IPsec, regardless of whether AH or ESP is employed. 

A transport mode SA is a security association between two hosts. Transport mode provides the 

authentication and/or encryption service to the higher layer protocol. This mode of operation is 

only supported by IPsec hosts. A tunnel mode SA is a security association applied to an IP 

tunnel. In this mode, there is an "outer" IP header that specifies the IPsec destination and an 

"inner" IP header that specifies the destination for the IP packet. This mode of operation is 

supported by both hosts and security gateways. 

 

 

  ORIGINAL PACKET BEFORE APPLYING AH 

 

         ---------------------------- 

   IPv4  |orig IP hdr  |     |      | 

         |(any options)| TCP | Data | 

         ---------------------------- 

 

         --------------------------------------- 

   IPv6  |             | ext hdrs |     |      | 

         | orig IP hdr |if present| TCP | Data | 

         --------------------------------------- 

 

  AFTER APPLYING AH (TRANSPORT MODE) 

 

          ------------------------------------------------------- 

 

    IPv4  |original IP hdr (any options) | AH | TCP |    Data   | 

          ------------------------------------------------------- 

          |<- mutable field processing ->|<- immutable fields ->| 

          |<----- authenticated except for mutable fields ----->| 

 



         ------------------------------------------------------------ 

 

   IPv6  |             |hop-by-hop, dest*, |    | dest |     |      | 

         |orig IP hdr  |routing, fragment. | AH | opt* | TCP | Data | 

         ------------------------------------------------------------ 

         |<--- mutable field processing -->|<-- immutable fields -->| 

         |<---- authenticated except for mutable fields ----------->| 

 

               * = if present, could be before AH, after AH, or both 

 

 

  AFTER APPLYING AH (TUNNEL MODE) 

 

        ---------------------------------------------------------------- 

   IPv4 |                              |    | orig IP hdr*  |   |      | 

        |new IP header * (any options) | AH | (any options) |TCP| Data | 

        ---------------------------------------------------------------- 

        |<- mutable field processing ->|<------ immutable fields ----->| 

        |<- authenticated except for mutable fields in the new IP hdr->| 

 

        -------------------------------------------------------------- 

   IPv6 |           | ext hdrs*|    |            | ext hdrs*|   |    | 

        |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data| 

        -------------------------------------------------------------- 

        |<--- mutable field -->|<--------- immutable fields -------->| 

        |       processing     | 

        |<-- authenticated except for mutable fields in new IP hdr ->| 

 

          * = if present, construction of outer IP hdr/extensions and 

              modification of inner IP hdr/extensions is discussed in 

              the Security Architecture document. 

FIGURE 12: IPsec tunnel and transport modes for AH. (Adapted from RFC 4302) 

 

Figure 12 show the IPv4 and IPv6 packet formats when using AH in both transport and tunnel 

modes. Initially, an IPv4 packet contains a normal IPv4 header (which may contain IP options), 

followed by the higher layer protocol header (e.g., TCP or UDP), followed by the higher layer 

data itself. An IPv6 packet is similar except that the packet starts with the mandatory IPv6 

header followed by any IPv6 extension headers, and then followed by the higher layer data. 

Note that in both transport and tunnel modes, the entire IP packet is covered by the 

authentication except for the mutable fields. A field is mutable if its value might change during 

transit in the network; IPv4 mutable fields include the fragment offset, time to live, and 

checksum fields. Note, in particular, that the address fields are not mutable. 

 

 

    ORIGINAL PACKET BEFORE APPLYING ESP 

 

            ---------------------------- 

      IPv4  |orig IP hdr  |     |      | 

            |(any options)| TCP | Data | 

            ---------------------------- 

 

 

            --------------------------------------- 

      IPv6  |             | ext hdrs |     |      | 

            | orig IP hdr |if present| TCP | Data | 



            --------------------------------------- 

 

 

    AFTER APPLYING ESP (TRANSPORT MODE) 

 

 

            ------------------------------------------------- 

      IPv4  |orig IP hdr  | ESP |     |      |   ESP   | ESP| 

            |(any options)| Hdr | TCP | Data | Trailer | ICV| 

 

            ------------------------------------------------- 

                                |<---- encryption ---->| 

                          |<-------- integrity ------->| 

 

            --------------------------------------------------------- 

      IPv6  | orig |hop-by-hop,dest*,|   |dest|   |    | ESP   | ESP| 

 

            |IP hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer| ICV| 

            --------------------------------------------------------- 

                                         |<--- encryption ---->| 

                                     |<------ integrity ------>| 

 

                * = if present, could be before ESP, after ESP, or both 

 

 

    AFTER APPLYING ESP (TUNNEL MODE) 

 

            ----------------------------------------------------------- 

      IPv4  | new IP hdr+ |     | orig IP hdr+  |   |    | ESP   | ESP| 

            |(any options)| ESP | (any options) |TCP|Data|Trailer| ICV| 

 

            ----------------------------------------------------------- 

                                |<--------- encryption --------->| 

                          |<------------- integrity ------------>| 

 

            ------------------------------------------------------------ 

      IPv6  | new+ |new ext |   | orig+|orig ext |   |    | ESP   | ESP| 

            |IP hdr| hdrs+  |ESP|IP hdr| hdrs+   |TCP|Data|Trailer| ICV| 

            ------------------------------------------------------------ 

                                |<--------- encryption ---------->| 

                            |<------------ integrity ------------>| 

 

 

            + = if present, construction of outer IP hdr/extensions and 

                modification of inner IP hdr/extensions is discussed in 

                the Security Architecture document. 

FIGURE 13: IPsec tunnel and transport modes for ESP. (Adapted from RFC 4303) 

 

Figure 13 shows the IPv4 and IPv6 packet formats when using ESP in both transport and tunnel 

modes. 

 As with AH, we start with a standard IPv4 or IPv6 packet. 

 In transport mode, the higher layer header and data, as well as ESP trailer 

information, is encrypted and the entire ESP packet is authenticated. In the case of 

IPv6, some of the IPv6 extension options can precede or follow the ESP header. 

 In tunnel mode, the original IP packet is encrypted and placed inside of an "outer" 

IP packet, while the entire ESP packet is authenticated. 



Note a significant difference in the scope of ESP and AH. AH authenticates the entire packet 

transmitted on the network whereas ESP only covers a portion of the packet transmitted on the 

network (the higher layer data in transport mode and the entire original packet in tunnel mode). 

The reason for this is straight-forward; in AH, the authentication data for the transmission fits 

neatly into an additional header whereas ESP creates an entirely new packet which is the one 

encrypted and/or authenticated. But the ramifications are significant. ESP transport mode as 

well as AH in both modes protect the IP address fields of the original transmissions. Thus, using 

IPsec in conjunction with network address translation (NAT) might be problematic because 

NAT changes the values of these fields after IPsec processing. 

The third component of IPsec is the establishment of security associations and key management. 

These tasks can be accomplished in one of two ways. 

The simplest form of SA and key management is manual management. In this method, a 

security administer or other individual manually configures each system with the key and SA 

management data necessary for secure communication with other systems. Manual techniques 

are practical for small, reasonably static environments but they do not scale well. 

For successful deployment of IPsec, however, a scalable, automated SA/key management 

scheme is necessary. Several protocols have defined for these functions: 

 The Internet Security Association and Key Management Protocol (ISAKMP) 

defines procedures and packet formats to establish, negotiate, modify and delete 

security associations, and provides the framework for exchanging information 

about authentication and key management (RFC 2407/RFC 2408). ISAKMP's 

security association and key management is totally separate from key exchange. 

 The OAKLEY Key Determination Protocol (RFC 2412) describes a scheme by 

which two authenticated parties can exchange key information. OAKLEY uses the 

Diffie-Hellman key exchange algorithm. 

 The Internet Key Exchange (IKE) algorithm (RFC 2409) is the default automated 

key management protocol for IPsec. 

 An alternative to IKE is Photuris (RFC 2522/RFC 2523), a scheme for establishing 

short-lived session-keys between two authenticated parties without passing the 

session-keys across the Internet. IKE typically creates keys that may have very 

long lifetimes. 

On a final note, IPsec authentication for both AH and ESP uses a scheme called HMAC, a 

keyed-hashing message authentication code described in FIPS 198 and RFC 2104. HMAC uses 

a shared secret key between two parties rather than public key methods for message 

authentication. The generic HMAC procedure can be used with just about any hash algorithm, 

although IPsec specifies support for at least MD5 and SHA-1 because of their widespread use. 

In HMAC, both parties share a secret key. The secret key will be employed with the hash 

algorithm in a way that provides mutual authentication without transmitting the key on the line. 

IPsec key management procedures will be used to manage key exchange between the two 

parties. 

Recall that hash functions operate on a fixed-size block of input at one time; MD5 and SHA-1, 

for example, work on 64 byte blocks. These functions then generate a fixed-size hash value; 

MD5 and SHA-1, in particular, produce 16 byte (128 bit) and 20 byte (160 bit) output strings, 

http://www.rfc-editor.org/rfc/rfc2407.txt
http://www.rfc-editor.org/rfc/rfc2408.txt
http://www.rfc-editor.org/rfc/rfc2412.txt
http://www.rfc-editor.org/rfc/rfc2409.txt
http://www.rfc-editor.org/rfc/rfc2522.txt
http://www.rfc-editor.org/rfc/rfc2523.txt
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://www.rfc-editor.org/rfc/rfc2104.txt


respectively. For use with HMAC, the secret key (K) should be at least as long as the hash 

output. 

The following steps provide a simplified, although reasonably accurate, description of how the 

HMAC scheme would work with a particular plaintext MESSAGE: 

1. Alice pads K so that it is as long as an input block; call this padded key Kp. Alice 

computes the hash of the padded key followed by the message, i.e., HASH 

(Kp:MESSAGE). 

2. Alice transmits MESSAGE and the hash value. 

3. Bob has also padded K to create Kp. He computes HASH (Kp:MESSAGE) on the 

incoming message. 

4. Bob compares the computed hash value with the received hash value. If they 

match, then the sender — Alice — must know the secret key and her identity is, 

thus, authenticated. 

 

  

FIGURE 14: Keyed-hash MAC operation. 

 

5.7. The SSL Family of Secure Transaction Protocols for the World Wide Web 

The Secure Sockets Layer (SSL) protocol was developed by Netscape Communications to 

provide application-independent secure communication over the Internet for protocols such as 

the Hypertext Transfer Protocol (HTTP). SSL employs RSA and X.509 certificates during an 

initial handshake used to authenticate the server (client authentication is optional). The client 

and server then agree upon an encryption scheme. SSL v2.0 (1995), the first version publicly 

released, supported RC2 and RC4 with 40-bit keys. SSL v3.0 (1996) added support for DES, 

RC4 with a 128-bit key, and 3DES with a 168-bit key, all along with either MD5 or SHA-1 

message hashes; this protocol is described in RFC 6101. 

 

http://www.rfc-editor.org/rfc/rfc6101.txt


  

FIGURE 15: Browser encryption configuration screen (Firefox). 

 

In 1997, SSL v3 was found to be breakable. By this time, the Internet Engineering Task Force 

(IETF) had already started work on a new, non-proprietary protocol called Transport Layer 

Security (TLS), described in RFC 2246 (1999). TLS extends SSL and supports additional crypto 

schemes, such as Diffie-Hellman key exchange and DSS digital signatures; RFC 4279 describes 

the pre-shared key crypto schemes supported by TLS. TLS is backward compatible with SSL 

(and, in fact, is recognized as SSL v3.1). SSL v3.0 and TLS v1.0 are the commonly supported 

versions on servers and browsers today (Figure 15); SSL v2.0 is rarely found today and, in 

fact, RFC 6176-compliant clients and servers that support TLS will never negotiate the use of 

SSL v2. 

In 2002, a cipher block chaining (CBC) vulnerability was described for TLS v1.0. In 2011, the 

theoretical became practical when a CBC proof-of-concept exploit was released. Meanwhile, 

TLS v1.1 was defined in 2006 (RFC 4346), adding protection against v1.0's CBC vulnerability. 

In 2008, TLS v1.2 was defined (RFC 5246), adding several additional cryptographic options. 

Today, users are urged to use TLS v1.2 or v1.1 in lieu of any earlier versions, and v1.3 is 

available in draft form. 

 

                       CLIENT       SERVER 

 (using URL of form https://)       (listening on port 443)  

 

http://www.rfc-editor.org/rfc/rfc2246.txt
http://www.rfc-editor.org/rfc/rfc4279.txt
http://www.rfc-editor.org/rfc/rfc6176.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc5246.txt


                  ClientHello ----> 

 

                                    ServerHello 

                                    Certificate* 

                                    ServerKeyExchange* 

                                    CertificateRequest* 

                              <---- ServerHelloDone 

 

                 Certificate* 

            ClientKeyExchange 

 

            CertifcateVerify* 

           [ChangeCipherSpec] 

                     Finished ----> 

 

                                    [ChangeCipherSpec] 

                              <---- Finished 

 

             Application Data <---> Application Data 

 

 

* Optional or situation-dependent messages; 

  not always sent 

 

                                     Adapted from RFC 2246 

 

FIGURE 16: SSL/TLS protocol handshake. 

 

Figure 16 shows the basic TLS (and SSL) message exchanges: 

1. URLs specifying the protocol https:// are directed to HTTP servers secured using 

SSL/TLS. The client will automatically try to make a TCP connection to the server 

at port 443. The client initiates the secure connection by sending 

a ClientHello message containing a Session identifier, highest SSL version 

number supported by the client, and lists of supported crypto and compression 

schemes (in preference order). 

2. The server examines the Session ID and if it is still in the server's cache, it will 

attempt to re-establish a previous session with this client. If the Session ID is not 

recognized, the server will continue with the handshake to establish a secure 

session by responding with a ServerHello message. 

The ServerHello repeats the Session ID, indicates the SSL version to use for 

this connection (which will be the highest SSL version supported by the server and 

client), and specifies which encryption method and compression method to be used 

for this connection. 

3. There are a number of other optional messages that the server might send, 

including: 

o Certificate, which carries the server's X.509 public key certificate 

(and, generally, the server's public key). This message will always be sent 

unless the client and server have already agreed upon some form of 

anonymous key exchange. (This message is normally sent.) 

o ServerKeyExchange, which will carry a premaster secret when the 

server's Certificate message does not contain enough data for this 

purpose; used in some key exchange schemes. 



o CertificateRequest, used to request the client's certificate in those 

scenarios where client authentication is performed. 

o ServerHelloDone, indicating that the server has completed its portion 

of the key exchange handshake. 

4. The client now responds with a series of mandatory and optional messages: 

o Certificate, contains the client's public key certificate when it has been 

requested by the server. 

o ClientKeyExchange, which usually carries the secret key to be used 

with the secret key crypto scheme. 

o CertificateVerify, used to provide explicit verification of a client's 

certificate if the server is authenticating the client. 

5. TLS includes the change cipher spec protocol to indicate changes in the encryption 

method. This protocol contains a single message, ChangeCipherSpec, which is 

encrypted and compressed using the current (rather than the new) encryption and 

compression schemes. The ChangeCipherSpec message is sent by both client 

and server to notify the other station that all following information will employ the 

newly negotiated cipher spec and keys. 

6. The Finished message is sent after a ChangeCipherSpec message to 

confirm that the key exchange and authentication processes were successful. 

7. At this point, both client and server can exchange application data using the 

session encryption and compression schemes. 

Side Note: It would probably be helpful to make some mention of SSL (or, more properly, TLS) 

as it is used today. Most of us have used SSL to engage in a secure, private transaction with 

some vendor. The steps are something like this. During the SSL exchange with the vendor's 

secure server, the server sends its certificate to our client software. The certificate includes the 

vendor's public key and a signature from the CA that issued the vendor's certificate. Our browser 

software is shipped with the major CAs' certificates which contains their public key; in that way 

we authenticate the server. Note that the server does not use a certificate to authenticate us! 

Instead, we are generally authenticated when we provide our credit card number; the server 

checks to see if the card purchase will be authorized by the credit card company and, if so, 

considers us valid and authenticated! While bidirectional authentication is certainly supported 

by SSL, this form of asymmetric authentication is more commonly employed today since most 

users don't have certificates. 

Microsoft's Server Gated Cryptography (SGC) protocol is another, albeit now defunct, extension 

to SSL/TLS. For several decades, it has been illegal to generally export products from the U.S. 

that employed secret-key cryptography with keys longer than 40 bits. For that reason, SSL/TLS 

has an exportable version with weak (40-bit) keys and a domestic (North American) version 

with strong (128-bit) keys. Within the last several years, however, use of strong SKC has been 

approved for the worldwide financial community. SGC is an extension to SSL that allows 

financial institutions using Windows NT servers to employ strong cryptography. Both the client 

and server must implement SGC and the bank must have a valid SGC certificate. During the 

initial handshake, the server will indicate support of SGC and supply its SGC certificate; if the 

client wishes to use SGC and validates the server's SGC certificate, the session can employ 128-

bit RC2, 128-bit RC4, 56-bit DES, or 168-bit 3DES. Microsoft supports SGC in the Windows 

95/98/NT versions of Internet Explorer 4.0, Internet Information Server (IIS) 4.0, and Money 

98. 

https://en.wikipedia.org/wiki/Server-Gated_Cryptography


As mentioned above, SSL was designed to provide application-independent transaction security 

for the Internet. Although the discussion above has focused on HTTP over SSL (https/TCP port 

443), SSL is also applicable to: 

Protocol   TCP Port Name/Number 

File Transfer Protocol (FTP)   ftps-data/989 & ftps/990 

Internet Message Access Protocol v4 (IMAP4)   imaps/993 

Lightweight Directory Access Protocol (LDAP)   ldaps/636 

Network News Transport Protocol (NNTP)   nntps/563 

Post Office Protocol v3 (POP3)   pop3s/995 

Telnet   telnets/992 

TLS was originally designed to operate over TCP. The IETF developed the Datagram Transport 

Layer Security (DTLS) protocol, based upon TLS, to operate over UDP. DTLS v1.2 is described 

in RFC 6347. (DTLS v1.0 can be found in RFC 4347.) RFC 6655 describes a suite of AES in 

Counter with Cipher Block Chaining - Message Authentication Code (CBC-MAC) Mode 

(CCM) ciphers for use with TLS and DTLS. An interesting analysis of the TLS protocol can be 

found in the paper "Analysis and Processing of Cryptographic Protocols" by 

Cowie. 

Vulnerabilities: A vulnerability in the OpenSSL Library was discovered in 

2014. Known as Heartbleed, this vulnerability had apparently been introduced 

into OpenSSL in late 2011 with the introduction of a feature called heartbeat. 

Heartbleed exploited an implementation flaw in order to exfiltrate keying 

material from an SSL server (or some SSL clients, in what is known at reverse 

Heartbleed); the flaw allowed an attacker to grab 64 KB blocks from RAM. 

Heartbleed is known to only affect OpenSSL v1.0.1 through v1.0.1f; the exploit was patched in 

v1.0.1g. In addition, the OpenSSL 0.9.8 and 1.0.0 families are not vulnerable. Note also 

that Heartbleed affects some versions of the Android operating system, notably v4.1.0 and 

v4.1.1 (and some, possibly custom, implementations of v4.2.2). Note that Heartbleed 

did not exploit a flaw in the SSL protocol, but rather a flaw in the OpenSSL implementation. 

But that wasn't the only problem with SSL. In October 2014, a new vulnerability was found 

called POODLE (Padding Oracle On Downgraded Legacy Encryption), a man-in-the-middle 

attack that exploited another SSL vulnerability that had unknowingly been in place for many 

years. Weeks later, an SSL vunerability in the bash Unix command shell was discovered, aptly 

namedShellshock. (Here's a nice overview of the 2014 SSL problems!) In March 2015, the Bar 

Mitzvah Attack was exposed, exploiting a 13-year old vulnerability in the Rivest Cipher 4 

(RC4) encryption algorithm. Then there was the FREAK (Factoring Attack on RSA-EXPORT 

Keys CVE-2015-0204) SSL/TLS Vulnerabilty that affected some SSL/TLS implementations, 

including Android OS and Chrome browser for OS X later that month. 

In March 2016, the SSL DROWN (Decrypting RSA with Obsolete and Weakened eNcryption) 

attack was announced. DROWN works by exploiting the presence of SSLv2 to crack encrypted 

communications and steal information from Web servers, email servers, or VPN sessions. You 

might have read above that SSLv2 fell out of use by the early 2000s and was formally 

deprecated in 2011. This is true. But backward compatibility often causes old software to remain 

dormant and it seems that up to one-third of all HTTPS sites are vulnerable to DROWN because 

SSLv2 has not been removed or disabled. 

http://www.rfc-editor.org/rfc/rfc6347.txt
http://www.rfc-editor.org/rfc/rfc4347.txt
http://www.rfc-editor.org/rfc/rfc6655.txt
http://www.cs.ru.ac.za/research/g06c5476/Honours/CryptoProtos2009Cowie.pdf
http://heartbleed.com/
http://www.slideshare.net/LookoutInc/heartbleed-android
http://en.wikipedia.org/wiki/POODLE
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
https://blogs.akamai.com/2014/10/poodle-shellshock-and-heartbleed-resources.html
http://securityaffairs.co/wordpress/35352/hacking/bar-mitzvah-attack-on-rc4.html
http://securityaffairs.co/wordpress/35352/hacking/bar-mitzvah-attack-on-rc4.html
https://www.us-cert.gov/ncas/current-activity/2015/03/06/FREAK-SSLTLS-Vulnerability
https://www.us-cert.gov/ncas/current-activity/2015/03/06/FREAK-SSLTLS-Vulnerability
https://drownattack.com/


5.8. Elliptic Curve Cryptography (ECC) 

In general, public-key cryptography systems use hard-to-solve problems as the basis of the 

algorithm. The most predominant algorithm today for public-key cryptography is RSA, based on 

the prime factors of very large integers. While RSA can be successfully attacked, the 

mathematics of the algorithm have not been comprised, per se; instead, computational brute-

force has broken the keys. The defense is "simple" — keep the size of the integer to be factored 

ahead of the computational curve! 

In 1985, Elliptic Curve Cryptography (ECC) was proposed independently by cryptographers 

Victor Miller (IBM) and Neal Koblitz (University of Washington). ECC is based on the 

difficulty of solving the Elliptic Curve Discrete Logarithm Problem (ECDLP). Like the prime 

factorization problem, ECDLP is another "hard" problem that is deceptively simple to state: 

Given two points, P and Q, on an elliptic curve, find the integer n, if it exists, such that P = nQ. 

Elliptic curves combine number theory and algebraic geometry. These curves can be defined 

over any field of numbers (i.e., real, integer, complex) although we generally see them used over 

finite fields for applications in cryptography. An elliptic curve consists of the set of real 

numbers (x,y) that satisfies the equation: 

y2 = x3 + ax + b 

The set of all of the solutions to the equation forms the elliptic curve. Changing a and b changes 

the shape of the curve, and small changes in these parameters can result in major changes in the 

set of (x,y) solutions. 

 



  

FIGURE 17: Elliptic curve addition. 

 

Figure 17 shows the addition of two points on an elliptic curve. Elliptic curves have the 

interesting property that adding two points on the elliptic curve yields a third point on the curve. 

Therefore, adding two points, P and Q, gets us to point R, also on the curve. Small changes in P 

or Q can cause a large change in the position of R. 

So let's go back to the original problem statement from above. The point Q is calculated as a 

multiple of the starting point, P, or, Q = nP. An attacker might know P and Q but finding the 

integer, n, is a difficult problem to solve. Q (i.e., nP) is the public key and n is the private key. 

ECC may be employed with many Internet standards, including CCITT X.509 certificates and 

certificate revocation lists (CRLs), Internet Key Exchange (IKE), Transport Layer Security 

(TLS), XML signatures, and applications or protocols based on the cryptographic message 

syntax (CMS). RFC 5639 proposes a set of elliptic curve domain parameters over finite prime 

fields for use in these cryptographic applications and RFC 6637 proposes additional elliptic 

curves for use with OpenPGP. 

RSA had been the mainstay of PKC for over a quarter-century. ECC, however, is emerging as a 

replacement in some environments because it provides similar levels of security compared to 

RSA but with significantly reduced key sizes. NIST use the following table to demonstrate the 

key size relationship between ECC and RSA, and the appropriate choice of AES key size: 

TABLE 4. ECC and RSA Key Comparison. 

http://www.rfc-editor.org/rfc/rfc5639.txt
http://www.rfc-editor.org/rfc/rfc6637.txt


ECC Key Size RSA Key Size 
Key-Size 

Ratio 
AES Key Size 

163 1,024 1:6 n/a 

256 3,072 1:12 128 

384 7,680 1:20 192 

512 15,360 1:30 256 

Key sizes in bits. Source: Certicom, NIST 

Since the ECC key sizes are so much shorter than comparable RSA keys, the length of the 

public key and private key is much shorter in elliptic curve cryptosystems. This results into 

faster processing times, and lower demands on memory and bandwidth; some studies have 

found that ECC is faster than RSA for signing and decryption, but slower for signature 

verification and encryption. 

ECC is particularly useful in applications where memory, bandwidth, and/or computational 

power is limited (e.g., a smartcard) and it is in this area that ECC use is expected to grow. A 

major champion of ECC today is Certicom; readers are urged to see their ECC tutorial. 

5.9. The Advanced Encryption Standard (AES) and Rijndael 

The search for a replacement to DES started in January 1997 when NIST announced that it was 

looking for an Advanced Encryption Standard. In September of that year, they put out a formal 

Call for Algorithms and in August 1998 announced that 15 candidate algorithms were being 

considered (Round 1). In April 1999, NIST announced that the 15 had been whittled down to 

five finalists (Round 2):MARS (multiplication, addition, rotation and substitution) from IBM; 

Ronald Rivest's RC6; Rijndael from a Belgian team; Serpent, developed jointly by a team from 

England, Israel, and Norway; andTwofish, developed by Bruce Schneier. In October 2000, NIST 

announced their selection: Rijndael. 

The remarkable thing about this entire process has been the openness as well as the international 

nature of the "competition." NIST maintained an excellent Web site devoted to keeping the 

public fully informed, at http://csrc.nist.gov/archive/aes/, which is now available as an archive 

site. Their Overview of the AES Development Effort has full details of the process, algorithms, 

and comments so I will not repeat everything here. 

In October 2000, NIST released the Report on the Development of the Advanced Encryption 

Standard (AES) that compared the five Round 2 algorithms in a number of categories. The table 

below summarizes the relative scores of the five schemes (1=low, 3=high): 

 
Algorithm 

Category MARS RC6 Rijndael Serpent Twofish 

General security 3 2 2 3 3 

Implementation of security 1 1 3 3 2 

Software performance 2 2 3 1 1 

Smart card performance 1 1 3 3 2 

http://www.certicom.com/
http://www.certicom.com/index.php/10-introduction
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.6084&rep=rep1&type=pdf
https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.cl.cam.ac.uk/~rja14/serpent.html
https://www.schneier.com/cryptography/twofish/
http://csrc.nist.gov/archive/aes/
http://csrc.nist.gov/archive/aes/index2.html
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://csrc.nist.gov/archive/aes/round2/r2report.pdf


Hardware performance 1 2 3 3 2 

Design features 2 1 2 1 3 

With the report came the recommendation that Rijndael be named as the AES standard. In 

February 2001, NIST released the Draft Federal Information Processing Standard (FIPS) AES 

Specification for public review and comment. AES contains a subset of Rijndael's capabilities 

(e.g., AES only supports a 128-bit block size) and uses some slightly different nomenclature and 

terminology, but to understand one is to understand both. The 90-day comment period ended on 

May 29, 2001 and the U.S. Department of Commerce officially adopted AES in December 

2001, published as FIPS PUB 197. 

AES (Rijndael) Overview 

Rijndael (pronounced as in "rain doll" or "rhine dahl") is a block cipher designed by Joan 

Daemen and Vincent Rijmen, both cryptographers in Belgium. Rijndael can operate over a 

variable-length block using variable-length keys; the specification submitted to NIST describes 

use of a 128-, 192-, or 256-bit key to encrypt data blocks that are 128, 192, or 256 bits long; 

note that all nine combinations of key length and block length are possible. The algorithm is 

written in such a way that block length and/or key length can easily be extended in multiples of 

32 bits and it is specifically designed for efficient implementation in hardware or software on a 

range of processors. The design of Rijndael was strongly influenced by the block cipher 

called Square, also designed by Daemen and Rijmen. See 

  The Rijndael page for a lot more information. 

Rijndael is an iterated block cipher, meaning that the initial input block and cipher key 

undergoes multiple rounds of transformation before producing the output. Each intermediate 

cipher result is called a State. 

For ease of description, the block and cipher key are often represented as an array of columns 

where each array has 4 rows and each column represents a single byte (8 bits). The number of 

columns in an array representing the state or cipher key, then, can be calculated as the block or 

key length divided by 32 (32 bits = 4 bytes). An array representing a State will 

have Nb columns, where Nb values of 4, 6, and 8 correspond to a 128-, 192-, and 256-bit block, 

respectively. Similarly, an array representing a Cipher Key will have Nk columns, 

where Nk values of 4, 6, and 8 correspond to a 128-, 192-, and 256-bit key, respectively. An 

example of a 128-bit State (Nb=4) and 192-bit Cipher Key (Nk=6) is shown below: 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 
 

  

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5 

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5 

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5 

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5 
 

The number of transformation rounds (Nr) in Rijndael is a function of the block length and key 

length, and is given by the table below: 

No. of Rounds 

Nr 

Block Size 

128 bits 192 bits 256 bits 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://en.wikipedia.org/wiki/Square_%28cipher%29
http://ktana.eu/html/theRijndaelPage.htm


Nb = 4 Nb = 6 Nb = 8 

Key 

Size 

128 bits 

Nk = 4 
10 12 14 

192 bits 

Nk = 6 
12 12 14 

256 bits 

Nk = 8 
14 14 14 

Now, having said all of this, the AES version of Rijndael does not support all nine combinations 

of block and key lengths, but only the subset using a 128-bit block size. NIST calls these 

supported variants AES-128, AES-192, and AES-256 where the number refers to the key size. 

The Nb, Nk, and Nr values supported in AES are: 

 
Parameters 

Variant Nb Nk Nr 

AES-128 4 4 10 

AES-192 4 6 12 

AES-256 4 8 14 

The AES/Rijndael cipher itself has three operational stages: 

 AddRound Key transformation 

 Nr-1 Rounds comprising: 

o SubBytes transformation 

o ShiftRows transformation 

o MixColumns transformation 

o AddRoundKey transformation 

 A final Round comprising: 

o SubBytes transformation 

o ShiftRows transformation 

o AddRoundKey transformation 

The paragraphs below will describe the operations mentioned above. The nomenclature used 

below is taken from the AES specification although references to the Rijndael specification are 

made for completeness. The arrays s and s' refer to the State before and after a transformation, 

respectively (NOTE: The Rijndael specification uses the array nomenclature a and b to refer to 

the before and after States, respectively). The subscripts i and j are used to indicate byte 

locations within the State (or Cipher Key) array. 

The SubBytes transformation 

The substitute bytes (called ByteSub in Rijndael) transformation operates on each of the State 

bytes independently and changes the byte value. An S-box, or substitution table, controls the 

transformation. The characteristics of the S-box transformation as well as a compliant S-box 

table are provided in the AES specification; as an example, an input State byte value of 107 

(0x6b) will be replaced with a 127 (0x7f) in the output State and an input value of 8 (0x08) 

would be replaced with a 48 (0x30). 



One way to think of the SubBytes transformation is that a given byte in State s is given a new 

value in State s' according to the S-box. The S-box, then, is a function on a byte in State s so 

that: 

s'i,j = S-box (si,j) 

The more general depiction of this transformation is shown by: 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 
 

====> 
 

S-box 
 

====> 
 

s'0,0 s'0,1 s'0,2 s'0,3 

s'1,0 s'1,1 s'1,2 s'1,3 

s'2,0 s'2,1 s'2,2 s'2,3 

s'3,0 s'3,1 s'3,2 s'3,3 
 

The ShiftRows transformation 

The shift rows (called ShiftRow in Rijndael) transformation cyclically shifts the bytes in the 

bottom three rows of the State array. According to the more general Rijndael specification, rows 

2, 3, and 4 are cyclically left-shifted by C1, C2, and C3 bytes, respectively, per the table below: 

Nb C1 C2 C3 

4 1 2 3 

6 1 2 3 

8 1 3 4 

The current version of AES, of course, only allows a block size of 128 bits (Nb = 4) so that 

C1=1, C2=2, and C3=3. The diagram below shows the effect of the ShiftRows transformation 

on State s: 

State s 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 
 

  

----------- no shift ----------->  

----> left-shift by C1 (1) ---->  

----> left-shift by C2 (2) ---->  

----> left-shift by C3 (3) ---->  
 

State s' 

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 
 

The MixColumns transformation 

The mix columns (called MixColumn in Rijndael) transformation uses a mathematical function 

to transform the values of a given column within a State, acting on the four values at one time as 

if they represented a four-term polynomial. In essence, if you think of MixColumns as a 

function, this could be written: 

s'i,c = MixColumns (si,c) 

for 0 ≤ i ≤ 3 for some column, c. The column position doesn't change, merely the values within 

the column. 

Round Key generation and the AddRoundKey transformation 



The AES Cipher Key can be 128, 192, or 256 bits in length. The Cipher Key is used to derive a 

different key to be applied to the block during each round of the encryption operation. These 

keys are called the Round Keys and each will be the same length as the block, i.e., Nb 32-bit 

words (words will be denoted W). 

The AES specification defines a key schedule by which the original Cipher Key (of 

length Nk 32-bit words) is used to form an Expanded Key. The Expanded Key size is equal to 

the block size times the number of encryption rounds plus 1, which will provide Nr+1 different 

keys. (Note that there are Nr encipherment rounds but Nr+1 AddRoundKey transformations.) 

Consider that AES uses a 128-bit block and either 10, 12, or 14 iterative rounds depending upon 

key length. With a 128-bit key, for example, we would need 1408 bits of key material 

(128x11=1408), or an Expanded Key size of 44 32-bit words (44x32=1408). Similarly, a 192-bit 

key would require 1664 bits of key material (128x13), or 52 32-bit words, while a 256-bit key 

would require 1920 bits of key material (128x15), or 60 32-bit words. The key expansion 

mechanism, then, starts with the 128-, 192-, or 256-bit Cipher Key and produces a 1408-, 1664-, 

or 1920-bit Expanded Key, respectively. The original Cipher Key occupies the first portion of 

the Expanded Key and is used to produce the remaining new key material. 

The result is an Expanded Key that can be thought of and used as 11, 13, or 15 separate keys, 

each used for one AddRoundKey operation. These, then, are the Round Keys. The diagram 

below shows an example using a 192-bit Cipher Key (Nk=6), shown in magenta italics: 
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The AddRoundKey (called Round Key addition in Rijndael) transformation merely applies each 

Round Key, in turn, to the State by a simple bit-wise exclusive OR operation. Recall that each 

Round Key is the same length as the block. 

Summary 

Ok, I hope that you've enjoyed reading this as much as I've enjoyed writing it — and now let me 

guide you out of the microdetail! Recall from the beginning of the AES overview that the cipher 

itself comprises a number of rounds of just a few functions: 

 SubBytes takes the value of a word within a State and substitutes it with another 

value by a predefined S-box 

 ShiftRows circularly shifts each row in the State by some number of predefined 

bytes 

 MixColumns takes the value of a 4-word column within the State and changes the 

four values using a predefined mathematical function 

 AddRoundKey XORs a key that is the same length as the block, using an Expanded 

Key derived from the original Cipher Key 

 

Cipher (byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)]) 



 

begin 

  byte state[4,Nb] 

 

  state = in 

 

  AddRoundKey(state, w) 

 

  for round = 1 step 1 to Nr-1 

    SubBytes(state) 

    ShiftRows(state) 

    MixColumns(state) 

    AddRoundKey(state, w+round*Nb) 

  end for 

 

  SubBytes(state) 

  ShiftRows(state) 

  AddRoundKey(state, w+Nr*Nb) 

 

  out = state 

end 

 

FIGURE 18: AES pseudocode. 

 

As a last and final demonstration of the operation of AES, Figure 18 is a pseudocode listing for 

the operation of the AES cipher. In the code: 

 in[] and out[] are 16-byte arrays with the plaintext and cipher text, respectively. 

(According to the specification, both of these arrays are actually 4*Nb bytes in 

length but Nb=4 in AES.) 

 state[] is a 2-dimensional array containing bytes in 4 rows and 4 columns. 

(According to the specification, this arrays is 4 rows by Nb columns.) 

 w[] is an array containing the key material and is 4*(Nr+1) words in length. 

(Again, according to the specification, the multiplier is actually Nb.) 

 AddRoundKey(), SubBytes(), ShiftRows(), and MixColumns() are functions 

representing the individual transformations. 

5.10. Cisco's Stream Cipher 

Stream ciphers take advantage of the fact that: 

x XOR y XOR y = x 

One of the encryption schemes employed by Cisco routers to encrypt passwords is a stream 

cipher. It uses the following fixed keystream (thanks also to Jason Fossen for independently 

extending and confirming this string): 

dsfd;kfoA,.iyewrkldJKDHSUBsgvca69834ncx 

When a password is to be encrypted, the password function chooses a number between 0 and 15, 

and that becomes the offset into the keystream. Password characters are then XORed byte-by-

byte with the keystream according to: 



Ci = Pi XOR K(offset+i) 

where K is the keystream, P is the plaintext password, and C is the ciphertext password. 

Consider the following example. Suppose we have the password abcdefgh. Converting the 

ASCII characters yields the hex string 0x6162636465666768. 

The keystream characters and hex code that supports an offset from 0 to 15 bytes and a 

password length up to 24 bytes is: 

  d s f d ; k f o A , . i y e w r k l d J K D H S U B s g v c a 

6 9 8 3 4 n c x 

0x647366643b6b666f412c2e69796577726b6c644a4b44485355427367766361

36393833346e6378 

Let's say that the function decides upon a keystream offset of 6 bytes. We then start with byte 6 

of the keystream (start counting the offset at 0) and XOR with the password: 

    0x666f412c2e697965 

XOR 0x6162636465666768 

    ------------------ 

    0x070D22484B0F1E0D 

The password would now be displayed in the router configuration as: 

password 7 06070D22484B0F1E0D 

where the "7" indicates the encryption type, the leading "06" indicates the offset into the 

keystream, and the remaining bytes are the encrypted password characters. 

(Decryption is pretty trivial so that exercise is left to the reader. If you need some help with 

byte-wise XORing, see http://www.garykessler.net/library/byte_logic_table.html. If you'd like 

some programs that do this, see http://www.garykessler.net/software/index.html#cisco7.) 

5.11. TrueCrypt 

TrueCrypt is an open source, on-the-fly crypto system that can be used on devices supports by 

Linux, MacOS, and Windows. First released in 2004, TrueCrypt can be employed to encrypt a 

partition on a disk or an entire disk. 

On May 28, 2014, the TrueCrypt.org Web site was suddenly taken down and redirected to the 

SourceForge page. Although this paper is intended as a crypto tutorial and not a news source 

about crypto controversy, the sudden withdrawal of TrueCrypt cannot go without notice. 

Readers interested in using TrueCrypt should know that the last stable release of the product is 

v7.1a (February 2012); v7.2, released on May 28, 2014, only decrypts TrueCrypt volumes, 

ostensibly so that users can migrate to another solution. The current TrueCrypt Web page — 

TCnext — is TrueCrypt.ch. The TrueCrypt Wikipedia page and accompanying references have 

some good information about the "end" of TrueCrypt as we knew it. 

While there does not appear to be any rush to abandon TrueCrypt at the time of this writing, it is 

also the case that you don't want to use old, unsupported software for too long. A replacement 

http://www.garykessler.net/library/byte_logic_table.html
http://www.garykessler.net/software/index.html#cisco7
http://www.truecrypt.org/
https://truecrypt.ch/
http://en.wikipedia.org/wiki/TrueCrypt


for TrueCrypt called CipherShed is currently under development. See also "TrueCrypt may live 

on after all as CipherShed." To date, CipherShed has not produced a product; another — 

working — fork of TrueCrypt is VeraCrypt. 

One final editorial comment. TrueCrypt was not broken or otherwise compromised! It was 

withdrawn by its developers for reasons that have not yet been made public but there is no 

evidence to assume that TrueCrypt has been damaged in any way; on the contrary, two audits, 

completed in April 2014 and April 2015, found no evidence of backdoors or malicious code. See 

Steve Gibson's TrueCrypt: Final Release Repository page for more information! 

TrueCrypt uses a variety of encryption schemes, including AES, Serpent, and Twofish. A 

TrueCrypt volume is stored as a file that appears to be filled with random data, thus has no 

specific file signature. (It is true that a TrueCrypt container will pass a chi-square (Χ2) 

randomness test, but that is merely a general indicator of possibly encrypted content. An 

additional clue is that a TrueCrypt container will also appear on a disk as a file that is some 

increment of 512 bytes in size. While these indicators might raise a red flag, they don't rise to 

the level of clearly indentifying a TrueCrypt volume.) 

When a user creates a TrueCrypt volume, a number of parameters need to be defined, such as 

the size of the volume and the password. To access the volume, the TrueCrypt program is 

employed to find the TrueCrypt encrypted file, which is then mounted as a new drive on the host 

system. 

 

  

https://ciphershed.org/
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FIGURE 19: TrueCrypt screen shot (Windows). 

 

  

FIGURE 20: TrueCrypt screen shot (MacOS). 

 

Consider this example where an encrypted TrueCrypt volume is stored as a file named James on 

a thumb drive. On a Windows system, this thumb drive has been mounted as device E:. If one 

were to view the E: device, any number of files might be found. The TrueCrypt application is 

used to mount the TrueCrypt file; in this case, the user has chosen to mount the TrueCrypt 

volume as device K:(Figure 19). Alternatively, the thumb drive could be used with a Mac 

system, where it has been mounted as the /Volumes/JIMMY volume. TrueCrypt mounts the 

encrypted file, James, and it is now accessible to the system (Figure 20). 

 



  

FIGURE 21: TrueCrypt hidden encrypted volume within an encrypted volume 

(from http://www.truecrypt.org/images/docs/hidden-volume.gif). 

 

One of the most interesting — certainly one of the most controversial — features of TrueCrypt 

is called plausible deniability, protection in case a user is "compelled" to turn over the encrypted 

volume's password. When the user creates a TrueCrypt volume, he/she chooses whether to 

create a standard or hidden volume. A standard volume has a single password, while a hidden 

volume is created within a standard volume and uses a second password. As shown in Figure 21, 

the unallocated (free) space in a TrueCrypt volume is always filled with random data, thus it is 

impossible to differentiate a hidden encrypted volume from a standard volume's free space. 

To access the hidden volume, the file is mounted as shown above and the user enters the hidden 

volume's password. When under duress, the user would merely enter the password of the 

standard (i.e., non-hidden) TrueCrypt volume. 

More information about TrueCrypt can be found at the TCnext Web Site or in the TrueCrypt 

User's Guide (v7.1a). 

An active area of research in the digital forensics community is to find methods with which to 

detect hidden TrueCrypt volumes. Most of the methods do not detect the presence of a hidden 

volume, per se, but infer the presence by forensic remnants left over. As an example, both Mac 

and Windows system usually have a file or registry entry somewhere containing a cached list of 

the names of mounted volumes. This list would, naturally, include the name of TrueCrypt 

volumes, both standard and hidden. If the user gives a name to the hidden volume, it would 

appear in such a list. If an investigator were somehow able to determine that there were two 

TrueCrypt volume names but only one TrueCrypt device, the inference would be that there was 

a hidden volume. A good summary paper that also describes ways to infer the presence of 

https://truecrypt.ch/
http://www.garykessler.net/library/crypto/TrueCrypt%20User%20Guide.pdf
http://www.garykessler.net/library/crypto/TrueCrypt%20User%20Guide.pdf


hidden volumes — at least on some Windows systems — can be found in " Detecting Hidden 

Encrypted Volumes" (Hargreaves & Chivers). 

Having nothing to do with TrueCrypt, but having something to do related to plausible 

deniability and devious crypto schemes, is a new approach to holding password cracking at bay 

dubbedHoney Encryption. With most of today's crypto systems, decrypting with a wrong key 

produces digital gibberish while a correct key produces something recognizable, making it easy 

to know when a correct key has been found. Honey Encryption produces fake data that 

resembles real data for every key that is attempted, making it significantly harder for an attacker 

to determine whether they have the correct key or not; thus, if an attacker has a credit card file 

and tries thousands of keys to crack it, they will obtain thousands of possibly legitimate credit 

card numbers. See "'Honey Encryption' Will Bamboozle Attackers with Fake Secrets" 

(Simonite) for some general information or "Honey Encryption: Security Beyond the Brute-

Force Bound" (Juels & Ristenpart) for a detailed paper. 

5.12. Encrypting File System (EFS) 

Microsoft introduced the Encrypting File System (EFS) into the NTFS v3.0 file system and has 

supported EFS since Windows 2000 and XP (although EFS is not supported in all variations of 

all Windows OSes). EFS can be used to encrypt individual files, directories, or entire volumes. 

While off by default, EFS encryption can be easily enabled via File Explorer (aka Windows 

Explorer) by right-clicking on the file, directory, or volume to be encrypted, selecting 

Properties, Advanced, and Encrypt contents to secure data (Figure 22). Note that encrypted files 

and directories are displayed in green in Windows Explorer. 

 

http://link.springer.com/chapter/10.1007%2F978-3-642-13241-4_21
http://link.springer.com/chapter/10.1007%2F978-3-642-13241-4_21
http://www.technologyreview.com/news/523746/honey-encryption-will-bamboozle-attackers-with-fake-secrets/
http://pages.cs.wisc.edu/~rist/papers/HoneyEncryptionpre.pdf
http://pages.cs.wisc.edu/~rist/papers/HoneyEncryptionpre.pdf


  

FIGURE 22: EFS and Windows (File) Explorer. 

 

The Windows command prompt provides an easy tool with which to detect EFS-encrypted files 

on a disk. The cipher command has a number of options, but the /u/n switches can be used 

to list all encrypted files on a drive (Figure 23). 

 



  

FIGURE 23: The cipher command. 

 

EFS supports a variety of secret key encryption schemes, including DES, DESX, and AES, as 

well as RSA public-key encryption. The operation of EFS — at least at the theoretical level — 

is clever and simple. 

When a file is saved to disk: 

 A random File Encryption Key (FEK) is generated by the operating system. 

 The file contents are encrypted using one of the SKC schemes and the FEK. 

 The FEK is stored with the file, encrypted with the user's RSA public key. In 

addition, the FEK is encrypted with the RSA public key of any other authorized 

users and, optionally, a recovery agent's RSA public key. 

When the file is opened: 

 The FEK is recovered using the RSA private key of the user, other authorized user, 

or the recovery agent. 

 The FEK is used to decrypt the file's contents. 

There are weaknesses with the system, most of which are related to key management. As an 

example, the RSA private key can be stored on an external device such as a floppy disk (yes, 

really!), thumb drive, or smart card. In practice, however, this is rarely done; the user's private 

RSA key is often stored on the hard drive. In addition, early EFS implementations (prior to 

Windows XP SP2) tied the key to the username; later implementations employ the user's 

password. 

A more serious implementation issue is that a backup file named esf0.tmp is created prior to a 

file being encrypted. After the encryption operation, the backup file is deleted — not wiped — 

leaving an unencrypted version of the file available to be undeleted. For this reason, it is best to 

use encrypted directories because the temporary backup file is protected by being in an 

encrypted directory. 



 

  

FIGURE 24: EFS key storage. (Source: NTFS.com) 

 

The EFS information is stored as a named stream in the $LOGGED_UTILITY_STREAM 

Attribute (attribute type 256 [0x100]). This information includes (Figure 24): 

 A Data Decryption Field (DDF) for every user authorized to decrypt the file, 

containing the user's Security Identifier (SID), the FEK encrypted with the user's 

RSA public key, and other information. 

 A Data Recovery Field (DRF) with the encrypted FEK for every method of data 

recovery 

Files in an NTFS file system maintain a number of attributes that contain the system metadata 

(e.g., the $STANDARD_INFORMATION attribute maintains the file timestamps and the 

$FILE_NAME attribute contains the file name). Files encrypted with EFS store the keys, as 

stated above, in a data stream named $EFS within the $LOGGED_UTILITY_STREAM 

attribute. Figure 25 shows the partial contents of the Master File Table (MFT) attributes for an 

EFS encrypted file. 

 

 

Master File Table (MFT) Parser V1.4 - Gary C. Kessler (7 June 2012) 

   : 

   : 

0056-0059  Attribute type: 0x10-00-00-00 [$STANDARD_INFORMATION] 

0060-0063  Attribute length: 0x60-00-00-00 [96 bytes] 

0064       Non-resident flag: 0x00 [Attribute is resident] 

   : 

   : 

0152-0155  Attribute type: 0x30-00-00-00 [$FILE_NAME] 

0156-0159  Attribute length: 0x78-00-00-00 [120 bytes] 

0160       Non-resident flag: 0x00 [Attribute is resident] 

http://www.ntfs.com/attribute-encrypted-files.htm


   : 

   : 

0392-0395  Attribute type: 0x40-00-00-00 [$VOLUME_VERSION/$OBJECT_ID] 

0396-0399  Attribute length: 0x28-00-00-00 [40 bytes] 

0400       Non-resident flag: 0x00 [Attribute is resident] 

   : 

   : 

0432-0435  Attribute type: 0x80-00-00-00 [$DATA] 

0436-0439  Attribute length: 0x48-00-00-00 [72 bytes] 

0440       Non-resident flag: 0x01 [Attribute is non-resident] 

   : 

   : 

0504-0507  Attribute type: 0x00-01-00-00 [$LOGGED_UTILITY_STREAM] 

0508-0511  Attribute length: 0x50-00-2E-00 [80 bytes (ignore two high-order bytes)] 

0512       Non-resident flag: 0x01 [Attribute is non-resident] 

   : 

0568-0575  Name: 0x24-00-45-00-46-00-53-00 [$EFS] 

 

FIGURE 25: The $LOGGED_UTILITY_STREAM Attribute. 

 

5.13. Some of the Finer Details of RC4 

RC4 is a variable key-sized stream cipher developed by Ron Rivest in 1987. RC4 works in 

output-feedback (OFB) mode, so that the key stream is independent of the plaintext. The 

algorithm is described in detail in Schneier's "Applied Cryptography," 2/e, pg. 397-398 or the 

Wikipedia RC4 article. 

RC4 employs an 8x8 substitution box (S-box). The S-box is initialized so that S[i] = i, for 

i=(0,255). 

A permutation of the S-box is then performed as a function of the key. The K array is a 256-byte 

structure that holds the key, repeating itself as necessary so as to be 256 bytes in length 

(obviously, a longer key results in less repetition). [[NOTE: All arithmetic below is assumed 

to be on a byte basis and so is implied to be modulo 256.]] 

   j = 0 

   for i = 0 to 255 

     j = j + S[i] + K[i] 

     swap (S[i], S[j]) 

Encryption and decryption are performed by XORing a byte of plaintext/ciphertext with a 

random byte from the S-box in order to produce the ciphertext/plaintext, as follows: 

   Initialize i and j to zero 

For each byte of plaintext (or ciphertext): 

   i = i + 1 

   j = j + S[i] 

   swap (S[i], S[j]) 

   z = S[i] + S[j] 

 

https://en.wikipedia.org/wiki/RC4


   Decryption: plaintext [i] = S[z] XOR ciphertext [i] 

   Encryption: ciphertext [i] = S[z] XOR plaintext [i] 

A Perl implementation of RC4 (fine for academic, but not production, purposes) can be found 

at http://www.garykessler.net/software/index.html#RC4. 

In 2014, Rivest and Schuldt developed a redesign of RC4 called Spritz. The main operation of 

Spritz is similar to the main operation of RC4, except that a new variable, w, is added: 

   i = i + w 

   j = k + S [j + S[i]] 

   k = i + k + S[j] 

   swap (S[i], S[j]) 

   z = (S[j + S[i + S[z+k]]] 

 

   Decryption: plaintext [i] = S[z] XOR ciphertext [i] 

   Encryption: ciphertext [i] = S[z] XOR plaintext [i] 

As seen above, RC4 has two pointers into the S-box, namely, i and j; Spritz adds a third 

pointer, k. 

Pointer i move slowly through the S-box; note that it is incremented by 1 in RC4 and by a 

constant, w, in Spritz. Spritz allows w to take on any odd value, ensuring that it is always 

relatively prime to 256. (In essence, RC4 sets w to a value of 1.) 

In both ciphers, the other pointer(s) — j in RC4 or j and k in Spritz — move pseudorandomly 

through the S-box. Both ciphers have a single swap of entries in the S-box. Both also produce an 

output byte, z, as a function of the other parameters. Spritz, additionally, includes the previous 

value of z as part of the calculation of the new value of z. 

6. CONCLUSION... OF SORTS 

This paper has briefly described how cryptography works. The reader must beware, however, 

that there are a number of ways to attack every one of these systems; cryptanalysis and attacks 

on cryptosystems, however, are well beyond the scope of this paper. In the words of Sherlock 

Holmes (ok, Arthur Conan Doyle, really), "What one man can invent, another can discover" 

("The Adventure of the Dancing Men"). 

Cryptography is a particularly interesting field because of the amount of work that is, by 

necessity, done in secret. The irony is that secrecy is not the key to the goodness of a 

cryptographic algorithm. Regardless of the mathematical theory behind an algorithm, the best 

algorithms are those that are well-known and well-documented because they are also well-tested 

and well-studied! In fact, time is the only true test of good cryptography; any cryptographic 

scheme that stays in use year after year is most likely a good one. The strength of cryptography 

lies in the choice (and management) of the keys;longer keys will resist attack better than shorter 

keys. 

The corollary to this is that consumers should run, not walk, away from any product that uses a 

proprietary cryptography scheme, ostensibly because the algorithm's secrecy is an advantage. 

The observation that a cryptosystem should be secure even if everything about the system — 

http://www.garykessler.net/software/index.html#RC4
http://people.csail.mit.edu/rivest/pubs/RS14.pdf
http://www.schneier.com/paper-keylength.html
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except the key — is known by your adversary has been a fundamental tenet of cryptography for 

over 125 years. It was first stated by Dutch linguist Auguste Kerckhoffs von Nieuwenhoff in his 

1883 (yes, 1883) papers titled La Cryptographie militaire, and has therefore become known as 

"Kerckhoffs' Principle." 

Getting a new crypto scheme accepted, marketed, and, commercially viable is always 
an interesting challenge. Back in ~2011, for example, a $10,000 challenge page for a 
new cipher called DioCipher was posted and scheduled to expire on 1 January 2013 — 
which it did. And that was the last that I heard of DioCipher. I leave it to the reader to 
consider the validity and usefulness of the public challenge process. 
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 On the Web: 

o Bob Lord's Online Crypto Museum 

o Crypto Museum 

o Crypto-Gram Newsletter 

o Cypherpunk -- A history 
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o Internet Engineering Task Force (IETF) Security Area 

 An Open Specification for Pretty Good Privacy (openpgp) 

 Common Authentication Technology (cat) 

 IP Security Protocol (ipsec) 

 One Time Password Authentication (otp) 

 Public-Key Infrastructure (X.509) (pkix) 

 S/MIME Mail Security (smime) 

 Simple Public Key Infrastructure (spki) 

 Transport Layer Security (tls) 

 Web Transaction Security (wts) 

 Web Security (websec) 

 XML Digital Signatures (xmldsig) 

o Kerberos: The Network Authentication Protocol (MIT) 

o The MIT Kerberos & Internet trust (MIT-KIT) Consortium (MIT) 

o Peter Gutman's godzilla crypto tutorial 

o Pretty Good Privacy (PGP): 

 The GNU Privacy Guard (GPG) 

 GPGTools 

 The International PGP Home Page 

 The OpenPGP Alliance 

o RSA's Cryptography FAQ (v4.1, 2000) 

o Interspersed in RSA's Public-Key Cryptography Standards (PKCS) pages 

are a very good set of chapters about cryptography. 

o Ron Rivest's "Cryptography and Security" Page 

o "List of Cryptographers" from U.C. Berkeley 

 

 Software: 

o Wei Dai's Crypto++, a free C++ class library of cryptographic primitives 

o Peter Gutman's cryptlib security toolkit 

o A Perl implementation of RC4 (for academic but not production purposes) 

can be found at http://www.garykessler.net/software/index.html#RC4. 

o A Perl program to decode Cisco type 7 passwords can be found 

at http://www.garykessler.net/software/index.html#cisco7. 

o The Rijndael page 

And for a purely enjoyable fiction book that combines cryptography and history, check out Neal 

Stephenson's Crytonomicon (published May 1999). You will also find in it a new secure crypto 

scheme based upon an ordinary deck of cards (ok, you need the jokers...) called the Solitaire 

Encryption Algorithm, developed by Bruce Schneier. 

 

Finally, I am not in the clothing business although I do have 

an impressive t-shirt collection (over 350 and counting!). I 

still proudly wear the DES (well, actually the IDEA) 

encryption algorithm t-shirt from 2600 Magazine which, 

sadly, appears to me no longer available. (It was always 

ironic to me thatThe Hacker Quarterly got the algorithm 

wrong but... (left). A t-shirt with Adam Back's RSA Perl 

code can be found 
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athttp://www.cypherspace.org/~adam/uk-shirt.html (right). 

 

APPENDIX. SOME MATH NOTES 

A number of readers over time have asked for some rudimentary background on a few of the 

less well-known mathematical functions mentioned in this paper. Although this is 

purposely not a mathematical treatise, some of the math functions mentioned here are essential 

to grasping how modern crypto functions work. To that end, some of the mathematical functions 

mentioned in this paper are defined in greater detail below. 

A.1. The Exclusive-OR (XOR) Function 

Exclusive OR (XOR) is one of the fundamental mathematical operations used in cryptography 

(and many other applications). George Boole, a mathematician in the late 1800s, invented a new 

form of "algebra" that provides the basis for building electronic computers and microprocessor 

chips. Boole defined a bunch of primitive logical operations where there are one or two inputs 

and a single output depending upon the operation; the input and output are either TRUE or 

FALSE. The most elemental Boolean operations are: 

 NOT: The output value is the inverse of the input value (i.e., the output is TRUE if 

the input is false, FALSE if the input is true) 

 AND: The output is TRUE if all inputs are true, otherwise FALSE. (E.g., "the sky 

is blue AND the world is flat" is FALSE while "the sky is blue AND security is a 

process" is TRUE.) 

 OR: The output is TRUE if either or both inputs are true, otherwise FALSE. (E.g., 

"the sky is blue OR the world is flat" is TRUE and "the sky is blue OR security is a 

process" is TRUE.) 

 XOR (Exclusive OR): The output is TRUE if exactly one of the inputs is TRUE, 

otherwise FALSE. (E.g., "the sky is blue XOR the world is flat" is TRUE while 

"the sky is blue XOR security is a process" is FALSE.) 

I'll only discuss XOR for now and demonstrate its function by the use of a so-called truth tables. 

In computers, Boolean logic is implemented in logic gates; for design purposes, XOR has two 

inputs (black) and a single output (red), and its logic diagram looks like this: 

XOR 
Input #1 

0 1 

Input #2 
0 0 1 

1 1 0 

So, in an XOR operation, the output will be a 1 if one input is a 1; otherwise, the output is 0. 

The real significance of this is to look at the "identity properties" of XOR. In particular, any 

value XORed with itself is 0 and any value XORed with 0 is just itself. Why does this matter? 

Well, if I take my plaintext and XOR it with a key, I get a jumble of bits. If I then take that 

jumble and XOR it with the same key, I return to the original plaintext. 

http://www.cypherspace.org/~adam/uk-shirt.html


NOTE: Boolean truth tables usually show the inputs and output as a single bit because they are 

based on single bit inputs, namely, TRUE and FALSE. In addition, we tend to apply Boolean 

operations bit-by-bit. For convenience, I have created Boolean logic tables when operating on 

bytes. 

A.2. The modulo Function 

The modulo function is, simply, the remainder function. It is commonly used in programming 

and is critical to the operation of any mathematical function using digital computers. 

To calculate X modulo Y (usually written X mod Y), you merely determine the remainder after 

removing all multiples of Y from X. Clearly, the value X mod Y will be in the range from 0 to 

Y-1. 

Some examples should clear up any remaining confusion: 

 15 mod 7 = 1 

 25 mod 5 = 0 

 33 mod 12 = 9 

 203 mod 256 = 203 

Modulo arithmetic is useful in crypto because it allows us to set the size of an operation and be 

sure that we will never get numbers that are too large. This is an important consideration when 

using digital computers. 

A.3. Information Theory and Entropy 

Information theory is the formal study of reliable transmission of information in the least 

amount of space or, in the vernacular of information theory, the fewest symbols. For purposes of 

digital communication, a symbol can be a byte (i.e., an eight-bit octet) or an even smaller unit of 

transmission. 

The father of information theory is Bell Labs scientist and MIT professor Claude E. Shannon. 

His seminal paper, "A Mathematical Theory of Communication" (The Bell System Technical 

Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948), defined a field that has laid the 

mathematical foundation for so many things that we take for granted today, from data 

compression, data storage and communication, and quantum computing to language processing, 

plagiarism detection and other linguistic analysis, and statistical modeling. And, of course, 

cryptography — although crypto pre-dates information theory by nearly 2000 years. 

There are many everyday computer and communications applications that have been enabled by 

the formalization of information theory, such as: 

 Lossless data compression, where the compressed data is an exact replication of 

the uncompressed source (e.g., PKZip, GIF, PNG, and WAV). 

 Lossy data compression, where the compressed data can be used to reproduce the 

original uncompressed source within a certain threshold of accuracy (e.g., JPG and 

MP3). 

 Coding theory, which describes the impact of bandwidth and noise on the capacity 

of data communication channels from modems to Digital Subscriber Line (DSL) 
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services, why a CD or DVD with scratches on the surface can still be read, and 

codes used in error-correcting memory chips and forward error-correcting satellite 

communication systems. 

One of the key concepts of information theory is that of entropy. In physics, entropy is a 

quantification of the disorder in a system; in information theory, entropy describes the 

uncertainty of a random variable or the randomness of an information symbol. As an example, 

consider a file that has been compressed using PKZip. The original file and the compressed file 

have the same information content but the smaller (i.e., compressed) file has more entropy 

because the content is stored in a smaller space (i.e., with fewer symbols) and each data unit has 

more randomness than in the uncompressed version. In fact, a perfect compression algorithm 

would result in compressed files with the maximum possible entropy; i.e., the files would 

contain the same number of 0s and 1s, and they would be distributed within the file in a totally 

unpredictable, random fashion. 

As another example, consider the entropy of passwords (this text is taken from my paper, 

"Passwords — Strengths And Weaknesses," citing an example from Firewalls and Internet 

Security: Repelling the Wily Hacker by Cheswick & Bellovin [1994]): 

Most Unix systems limit passwords to eight characters in length, or 64 bits. But Unix only uses 

the seven significant bits of each character as the encryption key, reducing the key size to 56 

bits. But even this is not as good as it might appear because the 128 possible combinations of 

seven bits per character are not equally likely; users usually do not use control characters or 

non-alphanumeric characters in their passwords. In fact, most users only use lowercase letters in 

their passwords (and some password systems are case-insensitive, in any case). The bottom line 

is that ordinary English text of 8 letters has an information content of about 2.3 bits per letter, 

yielding an 18.4-bit key length for an 8-letter passwords composed of English words. Many 

people choose names as a password and this yields an even lower information content of about 

7.8 bits for the entire 8-letter name. As phrases get longer, each letter only adds about 1.2 to 1.5 

bits of information, meaning that a 16-letter password using words from an English phrase only 

yields a 19- to 24-bit key, not nearly what we might otherwise expect. 

Encrypted files tend to have a great deal of randomness. This is why a compressed file can be 

encrypted but an encrypted file cannot be compressed; compression algorithms rely on 

redundancy and repetitive patterns in the source file and such syndromes do not appear in 

encrypted files. 

Randomness is such an integral characteristic of encrypted files that an entropy test is often the 

basis for searching for encrypted files. Not all highly randomized files are encrypted, but the 

more random the contents of a file, the more likely that the file is encrypted. As an example, 

AccessData's Forensic Toolkit (FTK), software widely used in the computer forensics field, uses 

the following tests to detect encrypted files: 

 Arithmetic Mean: Calculated by summing all of the bytes in a file and dividing by 

the file length; if random, the value should be ~1.75. 

 Χ2 Error Percent: This distribution is calculated for a byte stream in a file; the 

value indicates how frequently a truly random number would exceed the calculated 

value. 

 Entropy: Describes the information density (per Shannon) of a file in 

bits/character; as entropy approaches 8, there is more randomness. 

http://www.garykessler.net/library/password.html


 MCPI Error Percent: The Monte Carlo algorithm uses statistical techniques to 

approximate the value of π; a high error rate implies more randomness. 

 Serial Correlation Coefficient: Indicates the amount to which each byte is an e-

mail relies on the previous byte. A value close to 0 indicates randomness. 

Given this, how do we ensure that crypto algorithms produce random numbers for high levels of 

entropy? Computers use random number generators (RNGs) for myriad purposes but computers 

cannot actually generate truly random sequences but, rather, sequences that have mostly random 

characteristics. To this end, computers use pseudorandom number generator (PRNG), 

aka deterministic random number generator, algorithms. NIST has a series of documents (SP 

800-90: Random Bit Generators) that address this very issue: 

 SP 800-90A: Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators 

 Draft SP 800-90 B: Recommendation for the Entropy Sources Used for Random 

Bit Generation 

 Draft SP 800-90 C: Recommendation for Random Bit Generator (RBG) 

Constructions 

SIDEBAR: While the purpose of this document is to be tutorial in nature, I cannot totally ignore 

the disclosures of Edward Snowden in 2013 about NSA activities related to cryptography. One 

interesting set of disclosures is around deliberate weaknesses in the NIST PRNG standards at 

the behest of the NSA. NIST denies any such purposeful flaws but this will be evolving news 

over time. Interested readers might want to review "NSA encryption backdoor proof of concept 

published" (M. Lee) or "Dual_EC_DRBG backdoor: a proof of concept" (A. Adamantiadis). 

Along these lines, another perspective of the Snowden disclosures relates to the impact on the 

world's most confidential data and critical infrastructures if governments are able to access 

encrypted communications. In July 2015, 14 esteemed cryptographers and computer scientists 

released a paper continuing the debate around cryptography and privacy. The paper, titled"Keys 

Under Doormats: Mandating insecurity by requiring government access to all data and 

communications," argues that government access to individual users' encrypted information will 

ultimately yield significant flaws in larger systems and infrastructures. Also check out the N.Y. 

Times article, "Security Experts Oppose Government Access to Encrypted Communication"(N. 

Perlroth). 

For readers interested in learning more about information theory, see the following sites: 

 Wikipedia entry for Information Theory 

 A Short Course in Information Theory (Eight lectures by David J.C. MacKay) 

 Entropy and Information Theory by Gray (Revised 1st ed., 1991). In 2011, 

the second edition was published. 

Finally, it is important to note that information theory is an continually evolving field. There is 

an area of research essentially questioning the "power" of entropy in determining the strength of 

a cryptosystem. An interesting paper about this is "Brute force searching, the typical set and 

Guesswork" by Christiansen, Duffy, du Pin Calmon, & Médard (2013 IEEE International 

Symposium on Information Theory); a relatively non-technical overview of that paper can be 

found at "Encryption Not Backed by Math Anymore" by Hardesty (DFI News, 8/15/2013). 
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